Using ClojureScript with heavy
industrial equipment

Kevin Lynagh
Keming Labs
ST MBI)

E
q&.m«@ «MMA ¢
e

\

Cig 'O

[hings you can take home

[hings you can take home

(defn hello
[name]
(str "Hello " name "!"))

(hello "YOW") ::=> "Hello YOw!"

[hings you can take home

This one weird trick Hacker News keeps off the frontpage

[hings you can take home

[hings you can take home

Talk outline

(optional)

e

E
q&.m«@ «MMA ¢
e

\

]
«)n,. A

AAANS

NN
0. 0««43«%»

A
5
Ry e

.
S
R
R

Needed: A better worktlow

Paperwork is hard to sync, bulky
Enable preventative maintenance

Photos are easy + more detalled

Complex detalls

Specification techniques

Specification techniques

Discussion

Specification techniques

E_amp doesn't workJ

Flow
charts

Specification techniques

v 4 & 1230

Electric Discharge .
. Minor Q
Tip to Root Interference

© Add Observation

Unknown Damage © Add Observation
Micropitting
Scratch

Electric Discharge

Inaccessible

Possible Crack

Add Observation Select Observation Type
“Add Observation” button is Modal overlay with scrolling
available on components that list of open observations.

allow open observations.
Button always appears at the
bottom of the observation list.

Specification techniques

“Ted the technician
WEIRIES ey

User
stories

"Mary the manager
needs to..."

Specification techniques

Prototypes

Specification techniques

A Specification techniques

Informa

A Specification techniques

" Formal

Harel's Statecharts

Back in the 80’s

Harel's doodles

C loly

4 _"_é%s_ée gy

tﬂ1 NG I el ,-

S AR

———— =5

\ T ! _--I d] __d_--rl =
L LAV e Al i-"‘}‘{ AW L

ol .’I - - e : — “4,- - -jr
\:‘_- . 4 \F'['IT‘;” . ,(\[[(;)}r f\ﬂ,{),’J ,ﬂ(.}l_— ’1 G - o I/
SR i A S _':.‘jj_;ﬁ';‘,a_‘_f'f?)nJ____?.‘_?'.f__(*._ 4

Science of Computer Programming 8 (1987) 231-274 231
Nerth-Holland

STATECHARTS: A VISUAL FORMALISM FOR
COMPLEX SYSTEMS*

David HAREL
Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Communicated by A. Pnueli
Received December 1984
Revised July 1986

Abstract. We present a broad extension of the conventional formalism of state machines and
state diagrams, that is relevant to the specification and design of complex discrete-event systems,
such as multi-computer real-time systems, communication protocols and digital control units. Qur
diagrams, which we call statecharts, extend conventional state-transition diagrams with essentially
three elements, dealing, respectively, with the notions of hierarchy, concurrency and communica-
tion. These transform the language of state diagrams into a highly structured and economical
description language. Statecharts are thus compact and expressive—small diagrams can express
complex behavior—as well as compositional and modular. When coupled with the capabilities
of computerized graphics, statecharts enable viewing the description at different levels of detail,
and make even very large specifications manageable and comprehensible. In fact, we intend to
demonstrate here that statecharts counter many of the objections raised against conventional state
diagrams, and thus appear to render specification by diagrams an attractive and plausible approach.
Statecharts can be used either as a stand-alone behavioral description or as part of a more general
design methodology that deals also with the system’s other aspects, such as functional decomposi-
tion and data-flow specification. We also discuss some practical experience that was gained over
the last three years in applying the statechart formalism to the specification of a particularly
complex system.

1. Introduction

‘The literature on software and systems engineering is almost unanimous in
recognizing the existence of a major problem in the specification and design of large
and complex reactive systems. A reactive system (see [14]), in contrast with a
transformational system, is characterized by being, to a large extent, event-driven,
continuously having to react to external and internal stimuli. Examples include
telephones, automobiles, communication networks, computer operating systems,
missile and avionics systems, and the man-machine interface of many kinds of
ordinary software. The problem is rooted in the difficulty of describing reactive
behavior in ways that are clear and realistic, and at the same time formal and

* The initial part of this research was carried out while the author was consulting for the Research
and Development Division of the Israel Aircraft Industries (IAI), Lod, Israel. Later stages were supported
in part by grants from IAI and AD CAD, Ltd.

0167-6423/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

Statechart semantics

Statechart semantics

Statechart semantics

Statechart semantics

submit
credentials

Statechart semantics

submit
credentials

Logging in

Statechart semantics

submit

credentials T
. vall
credentials App
Logging in

Statechart semantics

submit
credentials
i valid
g credentials
Logging in

invalid
credentials

Statechart semantics

submit

credentials %
. vali
credentials App
Logging in
invalid

credentials timeout

Statechart semantics

MIERNE=[Estarts on the login: screen.

'hey can enter some credentials and then hit the button to
submit the credentials.

The user is now “logging In" and we are waiting for a

= BERCE ffom the server.

T the server replies that the login is valid, the user Is sent
into the app.

It the server replies that the login Is not valid, the user Is
sent back to the login screen with an error message.
There is also a 5 second timeout, so If we don't hear back
from the server by then, the user Is sent to a screen that
explains that they need to be online to use this app.

Statechart semantics

S .AA

edédtidine _

valid Py

credentials PP
Logging in

invalid
credentials

Statechart semantics

Offline Online

connect

disconnect

Implementing our app

(Online \
connect | N M

P r—\

disconnect e \ :
| Rt i
o ie
°
[]
o
o) .

Implementation

HTML

Lets start at “Login”

submit

credentials %
. vali
credentials App
Logging in
invalid

credentials timeout

Login screen

(defn login-template
[username password transition]

[:div
i ogin Plz"]

[: form
{:on-submit (fn [e]
(transition "submit credentials"
username password))}

rinput {:type "text" :value username}]
:input {:type "password" :value password}]
EREplE v itype Ysubmit! t MLogind FIEE)

Transition fn from statechart

submit
credentials

(defn login-template
[username password trang”

[:div
i ogin Plz"]

[: form
{:on-submit (fn [e]
(transition "submit credentials"
username password))}

rinput {:type "text" :value username}]
:input {:type "password" :value password}]
EREplE v itype Ysubmit! t MLogind FIEE)

Similar states share templates

submit
credentials

. valid
credentials App
Logging in

invalid |
credentials timeout

Similar states share templates

(defn login-template
[state username password transition]

[:div
B ogin Plz"]

Fetorm
{:on-submit (fn [e]
(transition "submit credentials"
username password))}

[:input {:type "text" :value username
:disabled (when (= "logging in" state) true)}]
[:input {:type "password" :value password
:disabled (when (= "logging in" state) true)}]
[:input {:type "submit"
:disabled (when (= "logging in" state) true)}
statel]])

Similar states share templates

(defn login-template
[state username password transition]

[:div
:h1l "Login P1z"]

s form
{:on-submit (fn [e]
(transition "submit credentials"
username password))}

[:input {:type "text" :value username
:disabled (when (= "logging in" state) true)}]
[:input {:type "password" :value password
:disabled (when (= "logging in" state) true)}]
[:input {:type "submit"
:disabled (when (= "logging in" state) true)}
statelll])

“lemplates” = runctions

—

Reuse +
abstraction

[hings you can take home

Desighers
love It!

[:html
[:body
(login—-template "login" "Mr. Shortname" "sokokskskok!'!)
(login-template "logging in" "Mr. Shortname" "sokokskoksk!!)
(login—-template “login failed" "Mr. Shortname" "sopokokskok!'!)
(login-template "login" "Mrs. very super long name'" '"sxkkxkx'")

(login-template "login" e S M|

Desighers

love [t!

[:html
[:body
(login-template
(login-template
(login-template
(login-template
(login-template

11 'Loginll

- Wes ek Lo Sl E
“login failed"
11 'l-oginll

11 'l-oginll

"Mr. Shortname"
"Mr. Shortname"
"Mr. Shortname"
"Mrs. very super long name"

akeokskokskk !
" kskkseok s
Wkokskokskk !
Wkeokskoksksk !

IIII)]]

N N N S’

Composition

(defn checklist-item
[{:keys [path name note value]
1as opr
ctrl]

[t
[:p.name name]
[:p.note
{:on—-click #(ctrl "expand note" {:path path :note note})}
(or note "Add notes")]

[:.value
(observation—-point-selector op ctrl
#(ctrl "update" {:path (get-in @op [:observation :path])
rupdate %}))]

(photo-icon ctrl path op)]

Functions are real nice

Ihe entire Ul can be a single
function

‘Immediate mode’ U

(render x) =

Explicit application state

(render x) =

Explicit application state

(render x’) =

Explicit application state

{:state "login"
: login {:username "foo"
:password "bar'"}
:inspecting {..r

e

Explicit application state

) .

o

An iImmutable graph database

Benefits of explicit app state

Benefits of explicit app state

Viewable

{:state "login"
: login {:username "foo"
:password "bar"}
:inspecting {..r

odr

Benefits of explicit app state

Serializable

{:state "login"
: login {:username "foo"
:password "bar"}
:inspecting {..} o 00 g
¥,

Benefits of explicit app state

Reloadable
(f) (f' X)

Benefits of explicit app state

Undo
(fX)"“’(fX?““’ (fX”)

VWrap up

Prototype

Discussions

Specs are tricky. ..

Flow charts

Screen flows

[Lamp doesn't workJ

Lam :
pluggedpin? > Plug in IampJ
| o 0 |
burnE::ilbout‘? [>| Replace bulb)

Add Observation Select Observation Type
Add O tio uttor Modal «) h scrolli

(Repair lamp]

= {forfs

Statecharts

Model state explicitly

transition

ansition x “some event”) = x’

Build your Ul as a function

(render x) =

Functions are awesomel

(render x) =

L * Reuse

« Composition
* Testing

cxplicit data are awesome!

(render x) =

<
1'/\?
=2
XS
Y
2 <>
O
o°<\(\e
o
TS
e
<
(2 - o2
5 <@
\° 61'/6?
«\"’&
0’3
] ntrospection

Serializability
Reloadable
Undo

I hanks!

Kevin Lynagh @lynaghk
Keming Labs
https://keminglabs.com/talks/

