
Using ClojureScript with heavy
industrial equipment

Kevin Lynagh	

Keming Labs	

2015 May 22

f(x) = x

Things you can take home

(defn hello
 [name]
 (str "Hello " name "!"))

(hello "YOW") ;;=> "Hello YOW!"

Things you can take home

contributed articles

MARCH 2009 | VOL. 52 | NO. 3 | COMMUNICATIONS OF THE ACM 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

This one weird trick Hacker News keeps off the frontpage

Things you can take home

Things you can take home

f(x) =

Things you can take home

Talk outline
contributed articles

MARCH 2009 | VOL. 52 | NO. 3 | COMMUNICATIONS OF THE ACM 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

(optional)

Needed: A better workflow

Paperwork is hard to sync, bulky	

Enable preventative maintenance	

Photos are easy + more detailed

Complex details

Specification techniques

Specification techniques

Discussion

Specification techniques

Flow	

charts

Specification techniques

Screen	

flows

Add Observation
“Add Observation” button is
available on components that
allow open observations.
Button always appears at the
bottom of the observation list.

12:30

A

Add Observation+

Select Observation Type
Modal overlay with scrolling
list of open observations.

12:30

Middle

Add Observation+ Tip to Root Interference

Unknown Damage

Micropitting

Scratch

Electric Discharge

Inaccessible

Possible Crack

Macropitting

12:30

A

Electric Discharge Minor
Add notes

Add Observation+

"

Specification techniques

“Ted the technician
wants to…”

User
stories

“Mary the manager
needs to…”

Specification techniques

Prototypes

Specification techniques

Specification techniques

Informal

Specification techniques

Formal

Harel’s Statechartscontributed articles

MARCH 2009 | VOL. 52 | NO. 3 | COMMUNICATIONS OF THE ACM 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

Back in the 80’scontributed articles

MARCH 2009 | VOL. 52 | NO. 3 | COMMUNICATIONS OF THE ACM 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

68 COMMUNICATIONS OF THE ACM | MARCH 2009 | VOL. 52 | NO. 3

contributed articles

this button is pressed?” In response, a
weighty two-volume document would
be brought out and volume A would be
opened to page 389, clause 6.11.6.10,
which says that if you press that button
such then such a thing would occur. At
which point (having by then learned
some of the system’s buzzwords) I would
say: “Yes, but is that true even when an
infrared missile is locked on a ground
target?” To which someone might say,
“Oh no, in volume B, page 895, clause
19.12.3.7, it says that in such a case
this other thing happens.” These Q&A
sessions would continue, and when it
would get to the fifth or sixth question
the engineers were no longer sure of
the answer and would have to call the
customer (the Air Force people) for a re-
sponse. By the time we got to the eighth
or ninth question even the customer
didn’t have an answer.

Obviously, someone would eventual-
ly have to decide what happens when you
press a certain button under a certain
set of circumstances. However, this per-
son might turn out to be a low-level pro-
grammer assigned to write some remote
part of the code, inadvertently making
decisions that influenced crucial behav-
ior on a much higher level. Coming, as
I did, from a clean-slate background in
terms of avionics (a polite way of saying
I knew nothing about the subject), this
was shocking. It seemed extraordinary
that such a talented and professional
team knew in detail the algorithm used
to measure the distance to a target but
not many of the far more basic behavior-
al facts involving the system’s response
to a simple event.

To illustrate, consider the following
three occurrences of a tiny piece of be-
havior buried in three totally different
locations in a large specification of a
chemical manufacturing plant:

“If the system sends a signal hot then
send a message to the operator”;

“If the system sends a signal hot with
T >60° then send a message to the op-
erator”; and

“When the temperature is maximum,
the system should display a message on
the screen, unless no operator is on the
site except when T <60°.”

Despite my formal education in
mathematical logic, I’ve never been
able to understand the third item. Sar-
casm aside, the real problem is that all
three were obviously written by three

experts from the Lavi avionics team, no-
tably Akiva Kaspi and Yigal Livne.

An avionics system is a wonder-
ful example of what my colleague at
Weizmann Amir Pnueli and I later
identified as a reactive system.17 The
main behavior that dominates such
a system is its reactivity, that is, its
event-driven, control-driven, event-
response nature. The behavior is of-
ten highly parallel and includes strict
time constraints and possibly stochas-
tic and continuous behavior. A typical
reactive system is not predominantly
data-intensive or algorithmic in na-
ture. Behavior is the crucial problem
in its development—the need to pro-
vide a clear yet precise description of
what the system does or should do
over time in response to both external

and internal events.
The Lavi avionics team consisted of

extremely talented people, including
those involved in radar, flight control,
electronic warfare, hardware, com-
munication, and software. The radar
people could provide the precise algo-
rithm used to measure the distance to
a target. The flight-control people could
talk about synchronizing the controls in
the cockpit with the flaps on the wings.
The communications people could talk
about formatting information traveling
through the MuxBus communication
line. Each had his own idiosyncratic
ways of thinking about and explaining
the system, as well as his own diagrams
and emphases.

I would ask seemingly simple ques-
tions, such as: “What happens when

Figure 1: Page from my early IAI notes (1983). Statechart constructs include hyper-edges,
nested orthogonality (a kind of concurrency), and transitions that reset a collection of
states (chart on right). Note the use of Cartesian products of sets of states (set-theoretic
formulation at the top) to capture the meaning of the orthogonality and the straightforward
algebraic notation for transitions between state vectors (lower right).

72 COMMUNICATIONS OF THE ACM | MARCH 2009 | VOL. 52 | NO. 3

contributed articles

sitions, default entries, and more.
Interestingly, the same quick compre-

hension applied to nonexperts outside
the avionics group. I recall an anecdote
from late 1983 in which in the midst of
one session the blackboard showed a
complicated statechart specifying the
behavior of some intricate portion of
the Lavi’s avionics. A knock on the door
brought in an Air Force pilot from the
“customer” team who knew a lot about
the aircraft being developed and its de-
sired behavior but had never seen a state
machine or a state diagram before, not
to mention a statechart. I remember
him staring at this intricate diagram (the
statechart) on the blackboard, with its
complicated mess of blobs inside other
blobs, arrows splitting and merging, and

the right track (see Figure 3). Very en-
couraging.

So much for clarity. As for precision
and formality, full executability was al-
ways central to the development of the
language. I found it difficult to imagine
the usefulness of a method that merely
makes it possible to say things about
behavior, give snippets of the dynam-
ics or observations about what happens
or what could happen, or provide some
partially connected pieces of behavior.
The whole idea was that if one builds
a statechart-based specification every-
thing must be rigorous enough to be
run (executed) just like software written
in a programming language. Executabil-
ity was a basic, not-to-be-compromised,
underlying concern during the process
of designing the language. It might
sound strange to a reader 26 years later,
but in 1983 system-development tools
did not execute models at all. Thus,
turning doodles like those in the figure
into a real language could be done only
with great care.

Building a Tool
Once the basics of the language were
established, it seemed natural to want
a tool that could be used not only to
prepare statecharts but also to execute
them. So in April 1984, three colleagues
(the brothers Ido and Hagi Lachover and
Amir Pnueli) and I founded a company,
Ad Cad, Ltd., later (1987) reorganizing it
as I-Logix, Inc., with Ad Cad as its R&D
branch. By 1986, we had built a tool for
statecharts called Statemate.

In extensive discussions with the
two most senior technical people as-
sociated with the company, Rivi Sher-
man and Michal Politi, along with
Amir Pnueli, we were able to figure out
during the Ad Cad period how to em-
bed statecharts into a broader frame-
work that was capable of capturing
the structure and functionality of a
large complex system. To this end, we
proposed a diagrammatic language
to structure a model that we called
activity-charts, an enriched kind of hi-
erarchical data-flow diagram whereby
arrows represent the possible flow
of information between the incident
functions (activities). Each activity
can be associated with a controlling
statechart (or code) that would also be
responsible for interfunction commu-
nication and cooperation.

asking, “What’s that?” One of the engi-
neers said, “That’s the behavior of the
so-and-so part of the system, and, by the
way, these rounded rectangles are states,
and the arrows are transitions between
states.” The pilot studied the blackboard
for a couple of minutes, then said, “I
think you have a mistake down here; this
arrow should go over here and not over
there.” He was right.

For me, this little event indicated that
we might be doing something right, that
maybe what I was proposing was a good
and useful way of specifying reactive
behavior. If an outsider could come in,
just like that, and grasp something that
complicated without being exposed to
the technical details of the language or
the approach, then maybe we were on

Figure 3: Page from the IAI notes (1983, events in Hebrew) showing a relatively “clean” draft
of the top levels of behavior for the main flight modes of the Lavi avionics, including
A/A (air-air), A/G (air-ground), NAV (automatic navigation), and ON GRD (on ground).
Note early use of a history connector in the A/G mode.

Harel’s doodles

Statechart semantics

Statechart semantics

Login

Statechart semantics

Login

Statechart semantics

Login

submit	

credentials

Statechart semantics

Login

Logging in

submit	

credentials

Statechart semantics

Login

Logging in

submit	

credentials

Appvalid	

credentials

Statechart semantics

Login

Logging in

submit	

credentials

invalid	

credentials

Appvalid	

credentials

Statechart semantics

Login

Logging in

Sorry

submit	

credentials

invalid	

credentials

Appvalid	

credentials

timeout

Statechart semantics
The user starts on the login screen.	

They can enter some credentials and then hit the button to
submit the credentials.	

The user is now “logging in” and we are waiting for a
response from the server.	

If the server replies that the login is valid, the user is sent
into the app.	

If the server replies that the login is not valid, the user is
sent back to the login screen with an error message.	

There is also a 5 second timeout, so if we don’t hear back
from the server by then, the user is sent to a screen that
explains that they need to be online to use this app.

Statechart semantics

OnlineOffline

Offline Online

disconnect

connect

Statechart semantics

Implementing our app

?

Implementation

Logging in

Sorry

submit	

credentials

invalid	

credentials

Appvalid	

credentials

timeout

Lets start at “Login”

Login

Login screen
(defn login-template
 [username password transition]

 [:div
 [:h1 "Login Plz"]

 [:form
 {:on-submit (fn [e]
 (transition "submit credentials"
 username password))}

 [:input {:type "text" :value username}]
 [:input {:type "password" :value password}]
 [:input {:type "submit"} "Login"]]])

Transition fn from statechart
(defn login-template
 [username password transition]

 [:div
 [:h1 "Login Plz"]

 [:form
 {:on-submit (fn [e]
 (transition "submit credentials"
 username password))}

 [:input {:type "text" :value username}]
 [:input {:type "password" :value password}]
 [:input {:type "submit"} "Login"]]])

submit	

credentials

Login

Similar states share templates

Logging in

Sorry

submit	

credentials

invalid	

credentials

Appvalid	

credentials

timeout

Login

(defn login-template
 [state username password transition]

 [:div
 [:h1 "Login Plz"]

 [:form
 {:on-submit (fn [e]
 (transition "submit credentials"
 username password))}

 [:input {:type "text" :value username
 :disabled (when (= "logging in" state) true)}]
 [:input {:type "password" :value password
 :disabled (when (= "logging in" state) true)}]
 [:input {:type "submit"
 :disabled (when (= "logging in" state) true)}
 state]]])

Similar states share templates

(defn login-template
 [state username password transition]

 [:div
 [:h1 "Login Plz"]

 [:form
 {:on-submit (fn [e]
 (transition "submit credentials"
 username password))}

 [:input {:type "text" :value username
 :disabled (when (= "logging in" state) true)}]
 [:input {:type "password" :value password
 :disabled (when (= "logging in" state) true)}]
 [:input {:type "submit"
 :disabled (when (= "logging in" state) true)}
 state]]])

Similar states share templates

“Templates” = Functions

Reuse +	

abstraction

Things you can take home

[:html
 [:body
 (login-template "login" "Mr. Shortname" "******")
 (login-template "logging in" "Mr. Shortname" "******")
 (login-template “login failed" "Mr. Shortname" "******")
 (login-template "login" "Mrs. very super long name" "******")
 (login-template "login" "" "")]]

Designers	

love it!

[:html
 [:body
 (login-template "login" "Mr. Shortname" "******")
 (login-template "logging in" "Mr. Shortname" "******")
 (login-template “login failed" "Mr. Shortname" "******")
 (login-template "login" "Mrs. very super long name" "******")
 (login-template "login" "" "")]]

Designers	

love it!

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

12:30

Tip

Overview Minor
Add notes

Observation Group #1

Distance from Root (m)

Damage Type Cracking

Damage Severity Minor

!

Distance from
Leading Edge (cm)

Distance from
Trailing Edge (cm)

Distance Width
Chord-wise (cm)

Distance Width
Span-wise (cm)

(defn checklist-item
 [{:keys [path name note value]
 :as op}
 ctrl]

 [:li
 [:p.name name]
 [:p.note
 {:on-click #(ctrl "expand note" {:path path :note note})}
 (or note "Add notes")]

 [:.value
 (observation-point-selector op ctrl
 #(ctrl "update" {:path (get-in @op [:observation :path])
 :update %}))]
!
 (photo-icon ctrl path op)]

Composition

Functions are real nice

(f x) =

The entire UI can be a single
function

(f x) =

“Immediate mode” UI

(render x) =

Explicit application state

?

(render x) =

Explicit application state

(render x’) =

?

Explicit application state

{:state "login"
 :login {:username "foo"
 :password "bar"}
 :inspecting {…}
 …}

Explicit application state

An immutable graph database

Benefits of explicit app state

Benefits of explicit app state

Viewable
{:state "login"
 :login {:username "foo"
 :password "bar"}
 :inspecting {…}
 …}

Benefits of explicit app state

Serializable
{:state "login"
 :login {:username "foo"
 :password "bar"}
 :inspecting {…}
 …}

Benefits of explicit app state

Reloadable

(f x) (f’ x)

Benefits of explicit app state

Undo
(f x) (f x’) (f x’’)

Wrap up

Specs are tricky…

Add Observation
“Add Observation” button is
available on components that
allow open observations.
Button always appears at the
bottom of the observation list.

12:30

A

Add Observation+

Select Observation Type
Modal overlay with scrolling
list of open observations.

12:30

Middle

Add Observation+ Tip to Root Interference

Unknown Damage

Micropitting

Scratch

Electric Discharge

Inaccessible

Possible Crack

Macropitting

12:30

A

Electric Discharge Minor
Add notes

Add Observation+

"

Prototype
Flow charts

Screen flows

Discussions

contributed articles

MARCH 2009 | VOL. 52 | NO. 3 | COMMUNICATIONS OF THE ACM 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

Statecharts = formal specs

Model state explicitly

(transition x “some event”) ⟹ x’

≣ transition

Build your UI as a function

(render x) =

Functions are awesome!

• Reuse	

• Composition	

• Testing

(render x) =

Explicit data are awesome!

• Introspection	

• Serializability	

• Reloadable	

• Undo

(render x) =

Thanks!

Kevin Lynagh @lynaghk
Keming Labs	

https://keminglabs.com/talks/

