
Unifying
interfaces

Kevin Lynagh
SpeakerConf Barcelona

May 2014

Pop Quiz

List all git tags
$ git tag

Pop Quiz

List all git remotes
$ git remote -v

Pop Quiz

List all git branches
$ git branch -a

Pop Quiz

List all git commit SHAs
$ git rev-list HEAD

Pop Quiz

List folder
$ ls

Pop Quiz

List current git root
$ git ls-tree HEAD --name-only

Pop Quiz

This sucks…

• Poor habituation

• It’s trivia

• Similar semantics should
have similar interfaces

Overview

1. Why are things this way?

2. How else could it be?

The origins of babel

We lack common

language + semantics

Babel results from lack of common language/semantics.
Without explicit protocols, identical semantics are fractured across dozens of incantations.
!
It's not easy to talk about protocols vs. implementations in *nix.
Without a name for the idea (e.g., Iterable), it's very easy to ignore the semantics and focus on just the implementation.
And if your only concern is the implementation of a single component, at no point are you concerned with the overall system cohesion.

But…text streams!

“Write programs to handle text streams,
because that is a universal interface”

Doug McIlroy

Humans have shared interface of sound waves: Just grunts.
!
There's no such thing as plain text: Everything has structure.
Keeping that structure implicit helps no one (we all just internalize inconsistent conventions and write shitty parsers).
!
Guess: most streams are more an artifact of implementation (e.g., tapes) rather than ideal semantics

Explicit protocols enable rich thought

• Consistent, usable interface

• Reuse + composition

• Smarter tooling

Example: Iterators

Iterator
Enumerator
java.util.Iterator
clojure.lang.ISeq

\nx
These iterate over the semantically-meaningful elements, not the implementation details of bytes

Example: Filesystems

File Folder

 + files: which are just byte streams associated with fixed metadata (name, size, permissions)
 + directories: which are just collections of files with fixed metadata (name, permissions)

Example: Plan 9

9P protocol messages:
!
version Negotiate protocol version
error Return an error
flush Abort a message
auth, attach Messages to establish a connection
walk Descend a directory hierarchy
create, open Prepare a fid for I/O
read, write Transfer data from and to a file
clunk Forget about a fid
remove Remove a file from a server
stat, wstat Inquire or change file attributes

Plan 9 famously ran with the idea of having everything meet at the filesystem (actually, 9P protocol), with fruitful results.
Email clients would expose your inbox as a directory---you could move messages around with `mv` and delete them with `rm`.
If you wanted data on another computer you just mounted it---no need to fuck around with `scp`.

Problems with filesystems

• Closed (fixed attribute set)

• Mapping ambiguity

• Missing semantics (e.g., txs)

E.g., how do you expose git tags?
!
+ a file with tag name whose contents is a 20-byte SHA?
 You can change the tag name with `mv` and the tag pointer with `cat new-sha > tagname`
 (Does the latter throw errors if the SHA does not resolve to a repo commit?)
+ a directory with tag name whose contents is the same contents as the associated commit?
 How do you change the tag or create new ones?

Crazy grand plan

1. uncover protocols

2. build a consistent editor/
environment (i.e., Emacs)

A twist

• Human perspective

• What do I need for my
computing tasks?

Don’t care about machine efficiency or internal operations.
Care about habitability, learnability, and leverage.

How do I compute?

filesystem / Dropbox
terminal (execute processes)
email
calendar
web browsing
code editing
prose editing

Similarities?

• Graphs of associative nodes

File/Dir: name, size, creation/modification times, tags, (edges to) children

Processes: executable path, PID, args, (edge to) environment

Email: to/cc/bcc, body, send date, (edges to) replies

Sections, subsections, paragraphs, sentences

Challenges

• Tooling

• Model vs. view

• Proliferation of interfaces / typing

Tooling is not biggest challenge—the bar is very low already and shouldn’t be difficult to match.
Tooling complexity (i.e., programs taking only text input) is baseline
!
!
Text sidesteps model v. view by only having one—text.
Datomic has simple tuple model; getting different views requires different queries.
Not clear how to choose which view to expose
!
clojure has ISeq, IReduce, IKVReduce; perf-oriented protocols vs. semantic

2014 Goals

• Drop filesystems

• Drop Emacs

Already have chunked content store design + prototype
!
Emacs is tricker—dropping it will require search; structural code editing; git interface

Unifying
interfaces

Kevin Lynagh
SpeakerConf Barcelona

May 2014

