
Keming Labs

Kevin Lynagh
2012 November 9

Øredev
@lynaghk Malmö, Sweden

statistical graphics
in Clojure

grammar
Building a

for

Saturday, November 10, 12

Agenda

Saturday, November 10, 12

Agenda

1Data
Visualization

Saturday, November 10, 12

Agenda

2
A

Grammar
of

Graphics

Saturday, November 10, 12

Saturday, November 10, 12

Agenda

1Data
Visualization

what + why + how

Saturday, November 10, 12

Wind energy

Saturday, November 10, 12

Bioinformatics

Saturday, November 10, 12

Doc &
patient,

meet

Data
Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

(didn’t make
this,

 just ♥ it)

Saturday, November 10, 12

How
(theory)

Saturday, November 10, 12

Data

Visual
Saturday, November 10, 12

A grammar of graphics ���� November �

Kevin J. Lynagh Keming Labs

�is handout accompanies
Building a grammar of graphics
with Clojure, a talk at Oredev
���� in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +� ��� ��� ����

Data visualization is the mapping of quantitative values—sales by re-
gion, hits per second, ��� utilization—to visual aesthetics such as position,
shape, size, and color. To effectively communicate data visually, you must
understand basic rules about the human perceptual system. In particular,
that we are better at “seeing” quantitative values encoded in certain aesthet-
ics versus others. For instance, we can readily estimate how much longer
one object is than another, whereas it is much more difficult to estimate rel-
ative areas. Some aesthetics do not even have a natural quantitative value
(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want
to communicate and then how to best show that data visually. �e tables
below show the most commonly used visual aesthetics. Position and length
are two of the most effective visual aesthetics, so it’s difficult to beat a simple
bar chart, scatter plot, or line graph. Aesthetics can be combined to show
multiple data dimensions at once, but techniques like small multiples tend
to be more effective.

Attribute Quantitative?

Form
Length Yes
Width Limited
Orientation No
Size Limited
Shape No
Enclosure No

Color
Hue No
Intensity Limited

Position
�-D position Yes

Table and figures adapted from
Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-
troduction for practitioners. For
a more in-depth review of human
perceptual research, see Information
Visualization: Perception for Design,
by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure �-D position

Balancing expressiveness with ease of use and simplicity is a central ten-
sion of programming. �is tension informs the design of statistical graphics
libraries, which can be arranged on a continuum:

General Specific

Java�D
<canvas>

<svg>
D�.js

Grammars
of graphics

JFreeChart, Excel
HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph
via low-level calls to, e.g, Java�D’s orʜ��ʟ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the
hard work yourself to iterate over data, choose tick marks, build legends,
and so on. At the other extreme, your library provides “canned” graphics.
�is is very easy, as long as the library provides a visualization for your exact
needs—just call the barChart() function and you’re done. However, if
you want to customize something; draw a bar graph with error bars, draw a
best-fit curve through a scatter plot, or highlight a single datum red to call
it out, and the library does not allow you to do it, you are out of luck.

Saturday, November 10, 12

Saturday, November 10, 12

Cost

Time 2D Position

Saturday, November 10, 12

2D Position

Saturday, November 10, 12

|--------|
Flight
duration

Width

Saturday, November 10, 12

Width

Saturday, November 10, 12

2Lessons
Saturday, November 10, 12

A grammar of graphics ���� November �

Kevin J. Lynagh Keming Labs

�is handout accompanies
Building a grammar of graphics
with Clojure, a talk at Oredev
���� in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +� ��� ��� ����

Data visualization is the mapping of quantitative values—sales by re-
gion, hits per second, ��� utilization—to visual aesthetics such as position,
shape, size, and color. To effectively communicate data visually, you must
understand basic rules about the human perceptual system. In particular,
that we are better at “seeing” quantitative values encoded in certain aesthet-
ics versus others. For instance, we can readily estimate how much longer
one object is than another, whereas it is much more difficult to estimate rel-
ative areas. Some aesthetics do not even have a natural quantitative value
(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want
to communicate and then how to best show that data visually. �e tables
below show the most commonly used visual aesthetics. Position and length
are two of the most effective visual aesthetics, so it’s difficult to beat a simple
bar chart, scatter plot, or line graph. Aesthetics can be combined to show
multiple data dimensions at once, but techniques like small multiples tend
to be more effective.

Attribute Quantitative?

Form
Length Yes
Width Limited
Orientation No
Size Limited
Shape No
Enclosure No

Color
Hue No
Intensity Limited

Position
�-D position Yes

Table and figures adapted from
Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-
troduction for practitioners. For
a more in-depth review of human
perceptual research, see Information
Visualization: Perception for Design,
by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure �-D position

Balancing expressiveness with ease of use and simplicity is a central ten-
sion of programming. �is tension informs the design of statistical graphics
libraries, which can be arranged on a continuum:

General Specific

Java�D
<canvas>

<svg>
D�.js

Grammars
of graphics

JFreeChart, Excel
HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph
via low-level calls to, e.g, Java�D’s orʜ��ʟ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the
hard work yourself to iterate over data, choose tick marks, build legends,
and so on. At the other extreme, your library provides “canned” graphics.
�is is very easy, as long as the library provides a visualization for your exact
needs—just call the barChart() function and you’re done. However, if
you want to customize something; draw a bar graph with error bars, draw a
best-fit curve through a scatter plot, or highlight a single datum red to call
it out, and the library does not allow you to do it, you are out of luck.

A grammar of graphics ���� November �

Kevin J. Lynagh Keming Labs

�is handout accompanies
Building a grammar of graphics
with Clojure, a talk at Oredev
���� in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +� ��� ��� ����

Data visualization is the mapping of quantitative values—sales by re-
gion, hits per second, ��� utilization—to visual aesthetics such as position,
shape, size, and color. To effectively communicate data visually, you must
understand basic rules about the human perceptual system. In particular,
that we are better at “seeing” quantitative values encoded in certain aesthet-
ics versus others. For instance, we can readily estimate how much longer
one object is than another, whereas it is much more difficult to estimate rel-
ative areas. Some aesthetics do not even have a natural quantitative value
(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want
to communicate and then how to best show that data visually. �e tables
below show the most commonly used visual aesthetics. Position and length
are two of the most effective visual aesthetics, so it’s difficult to beat a simple
bar chart, scatter plot, or line graph. Aesthetics can be combined to show
multiple data dimensions at once, but techniques like small multiples tend
to be more effective.

Attribute Quantitative?

Form
Length Yes
Width Limited
Orientation No
Size Limited
Shape No
Enclosure No

Color
Hue No
Intensity Limited

Position
�-D position Yes

Table and figures adapted from
Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-
troduction for practitioners. For
a more in-depth review of human
perceptual research, see Information
Visualization: Perception for Design,
by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure �-D position

Balancing expressiveness with ease of use and simplicity is a central ten-
sion of programming. �is tension informs the design of statistical graphics
libraries, which can be arranged on a continuum:

General Specific

Java�D
<canvas>

<svg>
D�.js

Grammars
of graphics

JFreeChart, Excel
HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph
via low-level calls to, e.g, Java�D’s orʜ��ʟ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the
hard work yourself to iterate over data, choose tick marks, build legends,
and so on. At the other extreme, your library provides “canned” graphics.
�is is very easy, as long as the library provides a visualization for your exact
needs—just call the barChart() function and you’re done. However, if
you want to customize something; draw a bar graph with error bars, draw a
best-fit curve through a scatter plot, or highlight a single datum red to call
it out, and the library does not allow you to do it, you are out of luck.

A grammar of graphics ���� November �

Kevin J. Lynagh Keming Labs

�is handout accompanies
Building a grammar of graphics
with Clojure, a talk at Oredev
���� in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +� ��� ��� ����

Data visualization is the mapping of quantitative values—sales by re-
gion, hits per second, ��� utilization—to visual aesthetics such as position,
shape, size, and color. To effectively communicate data visually, you must
understand basic rules about the human perceptual system. In particular,
that we are better at “seeing” quantitative values encoded in certain aesthet-
ics versus others. For instance, we can readily estimate how much longer
one object is than another, whereas it is much more difficult to estimate rel-
ative areas. Some aesthetics do not even have a natural quantitative value
(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want
to communicate and then how to best show that data visually. �e tables
below show the most commonly used visual aesthetics. Position and length
are two of the most effective visual aesthetics, so it’s difficult to beat a simple
bar chart, scatter plot, or line graph. Aesthetics can be combined to show
multiple data dimensions at once, but techniques like small multiples tend
to be more effective.

Attribute Quantitative?

Form
Length Yes
Width Limited
Orientation No
Size Limited
Shape No
Enclosure No

Color
Hue No
Intensity Limited

Position
�-D position Yes

Table and figures adapted from
Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-
troduction for practitioners. For
a more in-depth review of human
perceptual research, see Information
Visualization: Perception for Design,
by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure �-D position

Balancing expressiveness with ease of use and simplicity is a central ten-
sion of programming. �is tension informs the design of statistical graphics
libraries, which can be arranged on a continuum:

General Specific

Java�D
<canvas>

<svg>
D�.js

Grammars
of graphics

JFreeChart, Excel
HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph
via low-level calls to, e.g, Java�D’s orʜ��ʟ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the
hard work yourself to iterate over data, choose tick marks, build legends,
and so on. At the other extreme, your library provides “canned” graphics.
�is is very easy, as long as the library provides a visualization for your exact
needs—just call the barChart() function and you’re done. However, if
you want to customize something; draw a bar graph with error bars, draw a
best-fit curve through a scatter plot, or highlight a single datum red to call
it out, and the library does not allow you to do it, you are out of luck.

A grammar of graphics ���� November �

Kevin J. Lynagh Keming Labs

�is handout accompanies
Building a grammar of graphics
with Clojure, a talk at Oredev
���� in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +� ��� ��� ����

Data visualization is the mapping of quantitative values—sales by re-
gion, hits per second, ��� utilization—to visual aesthetics such as position,
shape, size, and color. To effectively communicate data visually, you must
understand basic rules about the human perceptual system. In particular,
that we are better at “seeing” quantitative values encoded in certain aesthet-
ics versus others. For instance, we can readily estimate how much longer
one object is than another, whereas it is much more difficult to estimate rel-
ative areas. Some aesthetics do not even have a natural quantitative value
(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want
to communicate and then how to best show that data visually. �e tables
below show the most commonly used visual aesthetics. Position and length
are two of the most effective visual aesthetics, so it’s difficult to beat a simple
bar chart, scatter plot, or line graph. Aesthetics can be combined to show
multiple data dimensions at once, but techniques like small multiples tend
to be more effective.

Attribute Quantitative?

Form
Length Yes
Width Limited
Orientation No
Size Limited
Shape No
Enclosure No

Color
Hue No
Intensity Limited

Position
�-D position Yes

Table and figures adapted from
Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-
troduction for practitioners. For
a more in-depth review of human
perceptual research, see Information
Visualization: Perception for Design,
by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure �-D position

Balancing expressiveness with ease of use and simplicity is a central ten-
sion of programming. �is tension informs the design of statistical graphics
libraries, which can be arranged on a continuum:

General Specific

Java�D
<canvas>

<svg>
D�.js

Grammars
of graphics

JFreeChart, Excel
HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph
via low-level calls to, e.g, Java�D’s orʜ��ʟ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the
hard work yourself to iterate over data, choose tick marks, build legends,
and so on. At the other extreme, your library provides “canned” graphics.
�is is very easy, as long as the library provides a visualization for your exact
needs—just call the barChart() function and you’re done. However, if
you want to customize something; draw a bar graph with error bars, draw a
best-fit curve through a scatter plot, or highlight a single datum red to call
it out, and the library does not allow you to do it, you are out of luck.

>

Some aesthetics are
better than others

>

Saturday, November 10, 12

Have
a

Thesis
Saturday, November 10, 12

How
(practice)

Saturday, November 10, 12

Off the rack

Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

Photo by Scott Schuman,
The Sartorialist

Bespoke

Saturday, November 10, 12

D3: Data Driven Documents (2011)
Mike Bostock Vadim OgievetskyJeffrey Heer

Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

Bespoke

Saturday, November 10, 12

Bespoke

(map flight-data
 (fn [{:keys [price carrier depart arrive]}]
 [:div.row
 [:button.price (str "$" price)]
 [:div.flight
 {:style {:left (time-scale depart)
 :width (time-scale (- arrive depart))}
 :carrier carrier}
 [:span carrier]]]))

Saturday, November 10, 12

Bespoke

(map flight-data
 (fn [{:keys [price carrier depart arrive]}]
 [:div.row
 [:button.price (str "$" price)]
 [:div.flight
 {:style {:left (time-scale depart)
 :width (time-scale (- arrive depart))}
 :carrier carrier}
 [:span carrier]]]))(map [[3 "3 a.m."] [6 "6 a.m."] [9 "9 a.m."]

 [12 "Noon"] [15 "3 p.m."] [18 "6 p.m."]]
 (fn [[t label]]
 [:div.tick {:style {:left (time-scale t)}}
 [:div.grid-line]
 [:span.label label]]))

Saturday, November 10, 12

#flights
 .flight
 z-index: 2
 -webkit-transition: all 1s
ease-out
.price
 position: absolute
 text-align: right
 width: 50px
 height: 80%
 top: 10%
 left: -60px

.flight
 position: absolute
 height: 60%
 top: 20%
 text-align: center
 border: 1px solid gray
 span
 color: white
 font-size: 0.8em
 font-family: sans-serif

@mixin carrier-color($carrier,
$color)
 .flight[carrier=#{$carrier}]
 background-color: $color

#axis
 .tick
 position: absolute
 height: 100%
 .label
 display: block
 position: relative
 top: -1.3em
 left: -2.5em
 width: 5em
 text-align: center
 font-family: sans-serif
 .grid-line
 position: absolute
 width: 1px
 height: 100%
 top: 0px
 background-color: hsl(0,0%,70%)
 z-index: 1

Bespoke

(map flight-data
 (fn [{:keys [price carrier depart arrive]}]
 [:div.row
 [:button.price (str "$" price)]
 [:div.flight
 {:style {:left (time-scale depart)
 :width (time-scale (- arrive depart))}
 :carrier carrier}
 [:span carrier]]]))(map [[3 "3 a.m."] [6 "6 a.m."] [9 "9 a.m."]

 [12 "Noon"] [15 "3 p.m."] [18 "6 p.m."]]
 (fn [[t label]]
 [:div.tick {:style {:left (time-scale t)}}
 [:div.grid-line]
 [:span.label label]]))

Saturday, November 10, 12

General Speci!c

|------------------------------------|
D3.js

<canvas>
Java2D

<svg>

Excel
Highcharts

(hard to use) (not expressive)

Saturday, November 10, 12

General Speci!c

|------------------------------------|
D3.js

<canvas>
Java2D

<svg>

Excel
Highcharts?

|

(hard to use) (not expressive)

Saturday, November 10, 12

Agenda

2
A

Grammar
of

Graphics

Saturday, November 10, 12

ggplot2 (2005)The Grammar
of Graphics (1999)

Saturday, November 10, 12

 mpg cyl disp hp drat wt ...
Mazda RX4 21.0 6 160 110 3.90 2.62 ...
Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 ...
Datsun 710 22.8 4 108 93 3.85 2.32 ...

Motor Trend cars dataset

Saturday, November 10, 12

ggplot(mtcars, aes(wt, mpg))
 + geom_point()

Exploratory

Saturday, November 10, 12

http://had.co.nz/ggplot2/ggplot.html
http://had.co.nz/ggplot2/ggplot.html

ggplot(mtcars, aes(factor(cyl), mpg))
 + geom_point(aes(colour = factor(cyl)))

Exploratory

Saturday, November 10, 12

http://had.co.nz/ggplot2/ggplot.html
http://had.co.nz/ggplot2/ggplot.html

ggplot(mtcars, aes(wt, mpg))
 + geom_boxplot()

Exploratory

Saturday, November 10, 12

http://had.co.nz/ggplot2/ggplot.html
http://had.co.nz/ggplot2/ggplot.html

ggplot(mtcars, aes(qsec, wt))
 + stat_smooth() + geom_point()

Exploratory

Saturday, November 10, 12

http://had.co.nz/ggplot2/ggplot.html
http://had.co.nz/ggplot2/ggplot.html

Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

Saturday, November 10, 12

complected
draw_scatterplot(data)

Saturday, November 10, 12

complected
draw_scatterplot(data)

calculate scale extents
calculate tick marks
curve !tting
calculate statistics
draw points
draw guides
draw labels
...

Saturday, November 10, 12

Photo by Earth to Donna, Pintrest
Saturday, November 10, 12

complectDe

Geometry

Statistics
Groupings
Scales

A graphic consists of:

Data

Aesthetic mappings

Saturday, November 10, 12

{:data mtcars
 :geom :point
 :mapping {:y :mpg
 :x :wt}}

Saturday, November 10, 12

{:data mtcars
 :geom #point{:radius 4}
 :mapping {:y :mpg
 :x :wt}}

Saturday, November 10, 12

{:data mtcars
 :geom #point{:radius 4}
 :mapping {:y :mpg
 :x :cyl}}

Saturday, November 10, 12

{:data mtcars
 :geom :boxplot
 :mapping {:y :mpg
 :x :cyl}}

Saturday, November 10, 12

all the things
Data

Saturday, November 10, 12

{:data mtcars
 :mapping {:x :wt :y :mpg}
 :geom :point}

API Support

Saturday, November 10, 12

API Support
{:data => mtcars,
 :mapping => {:x => :wt, :y => :mpg},
 :geom => :point}

Saturday, November 10, 12

API Support
{"data": mtcars,
 "mapping": {"x": "wt", "y": "mpg"},
 "geom": "point"}

Saturday, November 10, 12

U can haz
Programming

Saturday, November 10, 12

Spec --> Plot --> SVG/PDF/PNG

{:data mtcars
 :mapping {:x :wt :y :mpg}
 :geom :point}

Saturday, November 10, 12

Spec --> Plot --> SVG/PDF/PNG
{:height 500, :width 500, :title "",
 :layers ({:geoms
 (#point {:x 2.62, :y 21, :radius 10
 :fill nil, :stroke nil}
 #point {:x 2.875, :y 21, :radius 10
 :fill nil, :stroke nil}
 ...),
 :mapping {:x :wt, :y :mpg}}),
 :scales
 {:x #linear{:domain [1.513 5.424], :label :wt},
 :y #linear{:domain [10.4 33.9], :label :mpg}}}

Saturday, November 10, 12

Spec --> Plot --> SVG/PDF/PNG

Saturday, November 10, 12

Spec --> Plot --> SVG/PDF/PNG
{:height 500, :width 500, :title "",
 :layers ({:geoms
 (#point {:x 2.62, :y 21, :radius 10
 :fill nil, :stroke nil}
 #point {:x 2.875, :y 21, :radius 10
 :fill nil, :stroke nil}
 ...),
 :mapping {:x :wt, :y :mpg}}),
 :scales
 {:x #linear{:domain [1.513 5.424], :label :wt},
 :y #linear{:domain [10.4 33.9], :label :mpg}}}

Saturday, November 10, 12

Spec --> Plot SVG/PDF/PNG--> -->

Your code
(-> {:data mtcars
 :mapping {:y :mpg, :x :wt}
 :geom :point}

 compile

 (assoc-in [:scales :y :domain] [0 40])
 (assoc-in [:scales :x :label] "Vehicle Weight")

 render!)

Saturday, November 10, 12

Spec --> Plot SVG/PDF/PNG--> -->

Your code

Saturday, November 10, 12

complectDe

Geometry

Statistics
Groupings
Scales

A graphic consists of:

Data

Aesthetic mappings

Saturday, November 10, 12

say
grammar
A

lets you

Saturday, November 10, 12

think
grammar
A

lets you

Saturday, November 10, 12

Keming Labs

Kevin Lynagh
@lynaghk

Saturday, November 10, 12

