
Keming Labs

Kevin Lynagh

March 2013
SpeakerConf@lynaghk

Deshredding

Jigsaw Puzzles with
Pieces of Unknown
Orientation
Andrew C. Gallagher
Eastman Kodak Research Laboratories
2012

Jigsaw Puzzles with Pieces of Unknown Orientation

Andrew C. Gallagher
Eastman Kodak Research Laboratories

Rochester, New York
andrew.c.gallagher@gmail.com

Abstract

This paper introduces new types of square-piece jigsaw
puzzles: those for which the orientation of each jigsaw
piece is unknown. We propose a tree-based reassembly that
greedily merges components while respecting the geomet-
ric constraints of the puzzle problem. The algorithm has
state-of-the-art performance for puzzle assembly, whether
or not the orientation of the pieces is known. Our algorithm
makes fewer assumptions than past work, and success is
shown even when pieces from multiple puzzles are mixed
together. For solving puzzles where jigsaw piece location is
known but orientation is unknown, we propose a pairwise
MRF where each node represents a jigsaw piece’s orienta-
tion. Other contributions of the paper include an improved
measure (MGC) for quantifying the compatibility of poten-
tial jigsaw piece matches based on expecting smoothness in
gradient distributions across boundaries.

1. Introduction
For hundreds of years, people have been entertained by

the challenge of assembling the pieces of a jigsaw puzzle
into a complete picture. One imagines that the same strate-
gies employed by human solvers today were used to solve
those first puzzles produced by British mapmaker John
Spilsbury in the 18th century, relying on the puzzle piece
shapes and textures. Certainly, this combinatorial challenge
is one that inspires developments in computer science. The
computational problem of jigsaw puzzle assembly was first
introduced nearly fifty years ago in a fundamental work by
Freeman and Gardner [7]. As with a physical jigsaw puz-
zle, the object of the computational problem is to adjoin a
number of smaller jigsaw pieces to form a complete picture.

There are two essential components for computationally
solving a jigsaw puzzle, a measure of jigsaw piece compati-
bility for adjoining a pair of jigsaw pieces and a strategy for
puzzle assembly. In this paper, we propose advances in both
categories: this paper introduces a new measure for quanti-
fying the compatibility of adjacent jigsaw pieces, and a new

(a) 3456 Jigsaw Pieces

(b) 9600 Jigsaw Pieces

Figure 1: In this paper, we introduce square-piece puzzles where the ori-
entation of the jigsaw pieces is unknown. We solve puzzles using a con-
strained minimal spanning tree algorithm. We often achieve perfect re-
assembly of very large puzzles; the assembled puzzle in (a) has 3456 pieces
(right) from its jigsaw pieces (left), and the puzzle in (b) has 9600 jigsaw
pieces. We believe these are the largest automatically solved puzzles to
date, and certainly the largest with pieces of unknown orientation.

constrained tree-based assembly.
As noted by [9], the intriguing nature of the puzzle as-

sembly problem is enough to justify research on the topic.
In addition to being an interesting problem in its own right,
computational jigsaw assembly has applications in reassem-
bling archaeological artifacts [10] and recovering shredded
documents or photographs [2, 17, 11].

We follow the lead of recent work [1, 3, 24, 19] and con-
sider jigsaw puzzles with square pieces. This allows us to
focus our efforts exclusively on image content. Our con-
tributions to the state-of-the-art are as follows: First, we
introduce two new types of puzzles having pieces with un-
known orientation. To solve puzzles with jigsaw pieces
of unknown location and orientation, we propose a greedy
tree-based algorithm. We relax the assumption that the puz-
zle dimensions must be known at the time the puzzle is as-
sembled. To solve puzzles with jigsaw pieces of known lo-

Two problems

Piece compatibility

Assembly

(a) (b) RGB Putative Matches (c) MGC Putative Matches

(d) (e) RGB Putative Matches (f) MGC Putative Matches

Figure 2: Our MGC compatibility measure has better performance than simply summing color differences across the boundary (RGB). For each query
jigsaw piece in the left column, the compatibility measure is used to examine all other jigsaw pieces in the puzzle for finding the match to the right side of
the query piece. The top four matches with RGB SSD are shown in order in columns 2-5, and columns 6-9 show the top four results using MGC. Putative
matches are shown adjacent to the query pieces to allow the reader to judge the match. Correct matches are outlined in green. Correct matches tend to have
lower rank when MGC is used. Specifically, for matching (a), the RGB SSD chooses as its top match a jigsaw piece with almost the same boundary pixels,
but breaks the natural curves that are intersecting the right boundary. On the other hand, MGC learns the distribution of the gradients near the right edge of
(a), and the correct match (c, left) is the top ranked piece.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.682 0.649 0.621 0.828 0.790 0.863
LAB SSD 0.676 0.634 0.606 0.826 0.788 0.859
MGC 0.816 0.785 0.771 0.919 0.902 0.942

Table 2: Similarity performance for Type 1 puzzles: Across a variety of
puzzle sizes (K) and jigsaw piece sizes (P), the correct jigsaw matches
are found for larger portion of jigsaw pieces with MGC than with other
measures of jigsaw piece compatibility. Note that RGB and LAB SSD
have similar performance.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.596 0.569 0.542 0.782 0.740 0.832
LAB SSD 0.591 0.554 0.525 0.780 0.738 0.827
MGC 0.757 0.712 0.703 0.902 0.879 0.933

Table 3: Similarity performance for Type 2 puzzles with pieces of un-
known orientation: Across a variety of puzzle sizes (K) and jigsaw piece
sizes (P), the correct jigsaw matches are found for larger portion of jigsaw
pieces with MGC than with other measures of jigsaw piece compatibility.

and the second-smallest dissimilarity measure for that jig-
saw piece’s edge (akin to SIFT feature matching [15]). The
logic behind this ratio is that a confident true match is one
that is much better than any alternative. An unsure match
tends to have other jigsaw pieces with almost the same com-
patibility score and ratio value near 1.0. The confidences
are stored in a 3D array S(xi, xj , r) of size K × K × 16
where r indicates the pairwise configuration. The number
of counter-clockwise turns for xj is given as " r−1

4 # + 1,
and rc = mod (r − 1, 4) + 1 indicates whether xj is
{above, to the right, below, to the left} of xi.

4.1.2 Evaluation in Puzzle Assembly

In the context of assembling a jigsaw puzzle, the impor-
tant question is whether a proposed measure can be used
to find the correct matching jigsaw piece out of all the po-
tential matches. Over all 20 images from [3], we compute
the fraction of pieces for which the jigsaw piece having the
best compatibility score is the correct match. We compare
the proposed compatibility measure (MGC), as well as pre-

+ =
(a) Merge causes collision

+ =
(b) Successful merge

Figure 3: Example of collisions when merging together two forests of jig-
saw pieces in the “constrained tree stage” by making the red and blue edges
of the respective forests adjacent. In (a), a collision occurs where two jig-
saw pieces overlap (red X), so merging the two forests is abandoned. In
(b), the merge is successful.

viously proposed dissimilarities RGB and LAB. For visual
inspection, ranked potential matches are shown in Figure 2.

Results are reported in Tables 2 and 3 for different num-
bers of puzzle pieces in the puzzle (K = {221, 432, 1064}),
and for different size pieces (either P = {14, 28}. In all
cases, the proposed MGC measure outperforms the others
by a large margin. For example, for 79.0% of the jigsaw
pieces with K =432 and P=28 pixels, RGB SSD retrieves
the correctly matching jigsaw piece. With MGC, that figure
increases to 90.2%, reducing the error rate by over 50%.
The gap in performance between MGC and the other com-
patibility measures is greater when the resolution of each
jigsaw piece is smaller. On 432 piece puzzles, our MGC
measure achieves 90.2% and surpasses the predictive dis-
similarity of [19] (86% accuracy) and the LAB dissimilarity
used by [3] (79%). This is a significant improvement, with
a 29% reduction in errors over [19].

4.2. Tree-Based Reassembly for Types 1 and 2

In this section, we introduce our greedy assembly al-
gorithm for square-piece puzzles of unknown orientation
(Types 1 and 2). The algorithm is inspired by Kruskal’s
Algorithm [14] for finding a minimal spanning tree (MST)
of a graph G = (VG, EG).

The puzzle assembly problem emits a graph where
each jigsaw piece is a vertex, and edge weights (from
S(xi, xj , r)) correspond to the compatibilities (i.e. match-
ing costs) between pairs of pieces. Each graph edge also has
an associated geometric configuration r between the pair of

(a) (b) RGB Putative Matches (c) MGC Putative Matches

(d) (e) RGB Putative Matches (f) MGC Putative Matches

Figure 2: Our MGC compatibility measure has better performance than simply summing color differences across the boundary (RGB). For each query
jigsaw piece in the left column, the compatibility measure is used to examine all other jigsaw pieces in the puzzle for finding the match to the right side of
the query piece. The top four matches with RGB SSD are shown in order in columns 2-5, and columns 6-9 show the top four results using MGC. Putative
matches are shown adjacent to the query pieces to allow the reader to judge the match. Correct matches are outlined in green. Correct matches tend to have
lower rank when MGC is used. Specifically, for matching (a), the RGB SSD chooses as its top match a jigsaw piece with almost the same boundary pixels,
but breaks the natural curves that are intersecting the right boundary. On the other hand, MGC learns the distribution of the gradients near the right edge of
(a), and the correct match (c, left) is the top ranked piece.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.682 0.649 0.621 0.828 0.790 0.863
LAB SSD 0.676 0.634 0.606 0.826 0.788 0.859
MGC 0.816 0.785 0.771 0.919 0.902 0.942

Table 2: Similarity performance for Type 1 puzzles: Across a variety of
puzzle sizes (K) and jigsaw piece sizes (P), the correct jigsaw matches
are found for larger portion of jigsaw pieces with MGC than with other
measures of jigsaw piece compatibility. Note that RGB and LAB SSD
have similar performance.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.596 0.569 0.542 0.782 0.740 0.832
LAB SSD 0.591 0.554 0.525 0.780 0.738 0.827
MGC 0.757 0.712 0.703 0.902 0.879 0.933

Table 3: Similarity performance for Type 2 puzzles with pieces of un-
known orientation: Across a variety of puzzle sizes (K) and jigsaw piece
sizes (P), the correct jigsaw matches are found for larger portion of jigsaw
pieces with MGC than with other measures of jigsaw piece compatibility.

and the second-smallest dissimilarity measure for that jig-
saw piece’s edge (akin to SIFT feature matching [15]). The
logic behind this ratio is that a confident true match is one
that is much better than any alternative. An unsure match
tends to have other jigsaw pieces with almost the same com-
patibility score and ratio value near 1.0. The confidences
are stored in a 3D array S(xi, xj , r) of size K × K × 16
where r indicates the pairwise configuration. The number
of counter-clockwise turns for xj is given as " r−1

4 # + 1,
and rc = mod (r − 1, 4) + 1 indicates whether xj is
{above, to the right, below, to the left} of xi.

4.1.2 Evaluation in Puzzle Assembly

In the context of assembling a jigsaw puzzle, the impor-
tant question is whether a proposed measure can be used
to find the correct matching jigsaw piece out of all the po-
tential matches. Over all 20 images from [3], we compute
the fraction of pieces for which the jigsaw piece having the
best compatibility score is the correct match. We compare
the proposed compatibility measure (MGC), as well as pre-

+ =
(a) Merge causes collision

+ =
(b) Successful merge

Figure 3: Example of collisions when merging together two forests of jig-
saw pieces in the “constrained tree stage” by making the red and blue edges
of the respective forests adjacent. In (a), a collision occurs where two jig-
saw pieces overlap (red X), so merging the two forests is abandoned. In
(b), the merge is successful.

viously proposed dissimilarities RGB and LAB. For visual
inspection, ranked potential matches are shown in Figure 2.

Results are reported in Tables 2 and 3 for different num-
bers of puzzle pieces in the puzzle (K = {221, 432, 1064}),
and for different size pieces (either P = {14, 28}. In all
cases, the proposed MGC measure outperforms the others
by a large margin. For example, for 79.0% of the jigsaw
pieces with K =432 and P=28 pixels, RGB SSD retrieves
the correctly matching jigsaw piece. With MGC, that figure
increases to 90.2%, reducing the error rate by over 50%.
The gap in performance between MGC and the other com-
patibility measures is greater when the resolution of each
jigsaw piece is smaller. On 432 piece puzzles, our MGC
measure achieves 90.2% and surpasses the predictive dis-
similarity of [19] (86% accuracy) and the LAB dissimilarity
used by [3] (79%). This is a significant improvement, with
a 29% reduction in errors over [19].

4.2. Tree-Based Reassembly for Types 1 and 2

In this section, we introduce our greedy assembly al-
gorithm for square-piece puzzles of unknown orientation
(Types 1 and 2). The algorithm is inspired by Kruskal’s
Algorithm [14] for finding a minimal spanning tree (MST)
of a graph G = (VG, EG).

The puzzle assembly problem emits a graph where
each jigsaw piece is a vertex, and edge weights (from
S(xi, xj , r)) correspond to the compatibilities (i.e. match-
ing costs) between pairs of pieces. Each graph edge also has
an associated geometric configuration r between the pair of

(a) (b) RGB Putative Matches (c) MGC Putative Matches

(d) (e) RGB Putative Matches (f) MGC Putative Matches

Figure 2: Our MGC compatibility measure has better performance than simply summing color differences across the boundary (RGB). For each query
jigsaw piece in the left column, the compatibility measure is used to examine all other jigsaw pieces in the puzzle for finding the match to the right side of
the query piece. The top four matches with RGB SSD are shown in order in columns 2-5, and columns 6-9 show the top four results using MGC. Putative
matches are shown adjacent to the query pieces to allow the reader to judge the match. Correct matches are outlined in green. Correct matches tend to have
lower rank when MGC is used. Specifically, for matching (a), the RGB SSD chooses as its top match a jigsaw piece with almost the same boundary pixels,
but breaks the natural curves that are intersecting the right boundary. On the other hand, MGC learns the distribution of the gradients near the right edge of
(a), and the correct match (c, left) is the top ranked piece.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.682 0.649 0.621 0.828 0.790 0.863
LAB SSD 0.676 0.634 0.606 0.826 0.788 0.859
MGC 0.816 0.785 0.771 0.919 0.902 0.942

Table 2: Similarity performance for Type 1 puzzles: Across a variety of
puzzle sizes (K) and jigsaw piece sizes (P), the correct jigsaw matches
are found for larger portion of jigsaw pieces with MGC than with other
measures of jigsaw piece compatibility. Note that RGB and LAB SSD
have similar performance.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.596 0.569 0.542 0.782 0.740 0.832
LAB SSD 0.591 0.554 0.525 0.780 0.738 0.827
MGC 0.757 0.712 0.703 0.902 0.879 0.933

Table 3: Similarity performance for Type 2 puzzles with pieces of un-
known orientation: Across a variety of puzzle sizes (K) and jigsaw piece
sizes (P), the correct jigsaw matches are found for larger portion of jigsaw
pieces with MGC than with other measures of jigsaw piece compatibility.

and the second-smallest dissimilarity measure for that jig-
saw piece’s edge (akin to SIFT feature matching [15]). The
logic behind this ratio is that a confident true match is one
that is much better than any alternative. An unsure match
tends to have other jigsaw pieces with almost the same com-
patibility score and ratio value near 1.0. The confidences
are stored in a 3D array S(xi, xj , r) of size K × K × 16
where r indicates the pairwise configuration. The number
of counter-clockwise turns for xj is given as " r−1

4 # + 1,
and rc = mod (r − 1, 4) + 1 indicates whether xj is
{above, to the right, below, to the left} of xi.

4.1.2 Evaluation in Puzzle Assembly

In the context of assembling a jigsaw puzzle, the impor-
tant question is whether a proposed measure can be used
to find the correct matching jigsaw piece out of all the po-
tential matches. Over all 20 images from [3], we compute
the fraction of pieces for which the jigsaw piece having the
best compatibility score is the correct match. We compare
the proposed compatibility measure (MGC), as well as pre-

+ =
(a) Merge causes collision

+ =
(b) Successful merge

Figure 3: Example of collisions when merging together two forests of jig-
saw pieces in the “constrained tree stage” by making the red and blue edges
of the respective forests adjacent. In (a), a collision occurs where two jig-
saw pieces overlap (red X), so merging the two forests is abandoned. In
(b), the merge is successful.

viously proposed dissimilarities RGB and LAB. For visual
inspection, ranked potential matches are shown in Figure 2.

Results are reported in Tables 2 and 3 for different num-
bers of puzzle pieces in the puzzle (K = {221, 432, 1064}),
and for different size pieces (either P = {14, 28}. In all
cases, the proposed MGC measure outperforms the others
by a large margin. For example, for 79.0% of the jigsaw
pieces with K =432 and P=28 pixels, RGB SSD retrieves
the correctly matching jigsaw piece. With MGC, that figure
increases to 90.2%, reducing the error rate by over 50%.
The gap in performance between MGC and the other com-
patibility measures is greater when the resolution of each
jigsaw piece is smaller. On 432 piece puzzles, our MGC
measure achieves 90.2% and surpasses the predictive dis-
similarity of [19] (86% accuracy) and the LAB dissimilarity
used by [3] (79%). This is a significant improvement, with
a 29% reduction in errors over [19].

4.2. Tree-Based Reassembly for Types 1 and 2

In this section, we introduce our greedy assembly al-
gorithm for square-piece puzzles of unknown orientation
(Types 1 and 2). The algorithm is inspired by Kruskal’s
Algorithm [14] for finding a minimal spanning tree (MST)
of a graph G = (VG, EG).

The puzzle assembly problem emits a graph where
each jigsaw piece is a vertex, and edge weights (from
S(xi, xj , r)) correspond to the compatibilities (i.e. match-
ing costs) between pairs of pieces. Each graph edge also has
an associated geometric configuration r between the pair of

(a) (b) RGB Putative Matches (c) MGC Putative Matches

(d) (e) RGB Putative Matches (f) MGC Putative Matches

Figure 2: Our MGC compatibility measure has better performance than simply summing color differences across the boundary (RGB). For each query
jigsaw piece in the left column, the compatibility measure is used to examine all other jigsaw pieces in the puzzle for finding the match to the right side of
the query piece. The top four matches with RGB SSD are shown in order in columns 2-5, and columns 6-9 show the top four results using MGC. Putative
matches are shown adjacent to the query pieces to allow the reader to judge the match. Correct matches are outlined in green. Correct matches tend to have
lower rank when MGC is used. Specifically, for matching (a), the RGB SSD chooses as its top match a jigsaw piece with almost the same boundary pixels,
but breaks the natural curves that are intersecting the right boundary. On the other hand, MGC learns the distribution of the gradients near the right edge of
(a), and the correct match (c, left) is the top ranked piece.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.682 0.649 0.621 0.828 0.790 0.863
LAB SSD 0.676 0.634 0.606 0.826 0.788 0.859
MGC 0.816 0.785 0.771 0.919 0.902 0.942

Table 2: Similarity performance for Type 1 puzzles: Across a variety of
puzzle sizes (K) and jigsaw piece sizes (P), the correct jigsaw matches
are found for larger portion of jigsaw pieces with MGC than with other
measures of jigsaw piece compatibility. Note that RGB and LAB SSD
have similar performance.

P=14 P=28
K= K= K= K= K= K=
221 432 1064 221 432 1064

RGB SSD 0.596 0.569 0.542 0.782 0.740 0.832
LAB SSD 0.591 0.554 0.525 0.780 0.738 0.827
MGC 0.757 0.712 0.703 0.902 0.879 0.933

Table 3: Similarity performance for Type 2 puzzles with pieces of un-
known orientation: Across a variety of puzzle sizes (K) and jigsaw piece
sizes (P), the correct jigsaw matches are found for larger portion of jigsaw
pieces with MGC than with other measures of jigsaw piece compatibility.

and the second-smallest dissimilarity measure for that jig-
saw piece’s edge (akin to SIFT feature matching [15]). The
logic behind this ratio is that a confident true match is one
that is much better than any alternative. An unsure match
tends to have other jigsaw pieces with almost the same com-
patibility score and ratio value near 1.0. The confidences
are stored in a 3D array S(xi, xj , r) of size K × K × 16
where r indicates the pairwise configuration. The number
of counter-clockwise turns for xj is given as " r−1

4 # + 1,
and rc = mod (r − 1, 4) + 1 indicates whether xj is
{above, to the right, below, to the left} of xi.

4.1.2 Evaluation in Puzzle Assembly

In the context of assembling a jigsaw puzzle, the impor-
tant question is whether a proposed measure can be used
to find the correct matching jigsaw piece out of all the po-
tential matches. Over all 20 images from [3], we compute
the fraction of pieces for which the jigsaw piece having the
best compatibility score is the correct match. We compare
the proposed compatibility measure (MGC), as well as pre-

+ =
(a) Merge causes collision

+ =
(b) Successful merge

Figure 3: Example of collisions when merging together two forests of jig-
saw pieces in the “constrained tree stage” by making the red and blue edges
of the respective forests adjacent. In (a), a collision occurs where two jig-
saw pieces overlap (red X), so merging the two forests is abandoned. In
(b), the merge is successful.

viously proposed dissimilarities RGB and LAB. For visual
inspection, ranked potential matches are shown in Figure 2.

Results are reported in Tables 2 and 3 for different num-
bers of puzzle pieces in the puzzle (K = {221, 432, 1064}),
and for different size pieces (either P = {14, 28}. In all
cases, the proposed MGC measure outperforms the others
by a large margin. For example, for 79.0% of the jigsaw
pieces with K =432 and P=28 pixels, RGB SSD retrieves
the correctly matching jigsaw piece. With MGC, that figure
increases to 90.2%, reducing the error rate by over 50%.
The gap in performance between MGC and the other com-
patibility measures is greater when the resolution of each
jigsaw piece is smaller. On 432 piece puzzles, our MGC
measure achieves 90.2% and surpasses the predictive dis-
similarity of [19] (86% accuracy) and the LAB dissimilarity
used by [3] (79%). This is a significant improvement, with
a 29% reduction in errors over [19].

4.2. Tree-Based Reassembly for Types 1 and 2

In this section, we introduce our greedy assembly al-
gorithm for square-piece puzzles of unknown orientation
(Types 1 and 2). The algorithm is inspired by Kruskal’s
Algorithm [14] for finding a minimal spanning tree (MST)
of a graph G = (VG, EG).

The puzzle assembly problem emits a graph where
each jigsaw piece is a vertex, and edge weights (from
S(xi, xj , r)) correspond to the compatibilities (i.e. match-
ing costs) between pairs of pieces. Each graph edge also has
an associated geometric configuration r between the pair of

(a) 1 edge (b) 34 edges (c) 81 edges (d) 92 edges

(e) 156 edges (f) 174 edges (g) Assembled Puzzle (h) Spanning Tree

Figure 4: Puzzle assembly begins with each jigsaw piece as its own forest. Forests are merged (by combining and rotating, if necessary) to create assembled
subclusters according to the compatibility score that we introduce (MGC), until the puzzle is assembled (a)-(g). The spanning tree in (h) shows the final
representation of the solution as well as the order in which edges were added, from early (magenta) to later (yellow). This example has 192 jigsaw pieces.

jigsaw pieces. The MST of this graph would include every
jigsaw piece, and certainly the MST is the cheapest possible
configuration that could be used to assemble the pieces into
a single connected component. However, there is a prob-
lem. Nothing prevents the MST from being a graph that
results in an assembled puzzle that overlaps onto itself (e.g.
if edges of the MST indicate that two different pieces should
each be positioned to the right of a third piece). Therefore,
we desire the MST that is constrained to meet our geometric
requirement that the assembled puzzle should be flat (pieces
should not overlap).

Efficient methods for finding the MST have been discov-
ered, but virtually any constraint to the problem results in a
NP-hard variant. Specifically, constraining the degree of
vertexes in the MST results in an NP-hard problem [8]. The
geometric requirements above at least constrain the prob-
lem by that much, as the flat assembly requires that no ver-
tex have degree greater than four (in addition to the tighter
constraints on edge and corner pieces). Therefore, our MST
problem with geometric constraints is NP-hard as well, and
we propose a heuristic based on Kruskal’s algorithm.

As a review, Kruskal’s algorithm for finding the MST
begins by considering each vertex in V as a separate forest
(i.e. a forest is a vertex subset). From the set E of edges, the
minimum weight edge is found. If the vertexes associated
with that edge belong to separate forests, they are joined
into a single forest. Otherwise (i.e. the edge forms a loop in
one forest), the edge is discarded. The algorithm terminates
when all vertexes belong to the same forest, and the edge
set of the MST is the collection of non-discarded edges.

Our tree-based reassembly algorithm has three stages:
1. The constrained tree stage: In this stage, we perform a
constrained version of Kruskal’s algorithm to find a tree in
E that constructs a flat puzzle assembly. Each jigsaw piece
begins as its own forest in upright (non-rotated) orientation,
and forests record the relative spatial locations of the mem-

ber vertexes (jigsaw pieces) as well as the absolute rotation
to apply to each jigsaw piece. Entries of E are examined,
and the lowest cost edge emin is found and removed from
the set of remaining edges. If the vertexes of emin belong to
the same forest, emin is discarded because otherwise a loop
would be formed. If emin passes that test, the forests joined
by emin are merged according to the geometric relationship
associated r with emin. Merging the forests include updat-
ing the absolute rotations for each jigsaw piece. If, in merg-
ing the forests, two jigsaw pieces occupy the same position,
then a collision has occurred and emin is discarded without
merging the forests (see Figure 3). Otherwise, emin is added
to the set of edges in the tree. The procedure is described
by Figure 4, which shows a jigsaw puzzle in various stages
of assembly.
2. Trimming: Occasionally, the tree resulting from stage
1 does not fit neatly into a rectangular frame. If the dimen-
sions (number of jigsaw pieces on each edge) of the puz-
zle are known, then the assembled tree is trimmed. Trim-
ming is performed by finding the position of the frame that
trims off the fewest pieces. Trimming results in a single
assembled forest (those pieces within the frame) and the
trimmed pieces (which are returned to the set of candidate
piece forests). When orientation is unknown, the trimming
procedure must consider both orientations of the frame.
3. Filling: After trimming, the puzzle frame can have un-
occupied holes. Holes are filled by order of the number of
occupied adjacent neighbors. For each hole, the candidate
piece with a given rotation is selection that has the minimum
total dissimilarity score across all neighbors. We enforce
the requirement that pieces can only appear once in the as-
sembled puzzle; so if the correct match for a given hole is
elsewhere, then all available choices to fill a hole may be
poor. Figure 5 shows an example result of the trimming and
filling steps.

SEMI-AUTOMATIC ASSEMBLY OF REAL CROSS-CUT SHREDDED DOCUMENTS

Aaron Deever and Andrew Gallagher

Eastman Kodak

ABSTRACT

This paper introduces a semi-automatic approach for cross-
cut shredded document reassembly. Automatic algorithms
are proposed for segmenting and orienting individual shreds
from a scanned shred image, as well as for computing fea-
tures and ranking potential matches for each shred. Addition-
ally, a human-computer interface is designed to allow semi-
automatic assembly of the shreds using the computed feature
and match information. Our document de-shredding system
was tested on puzzles from the DARPA Shredder Challenge,
allowing successful reconstruction of multiple shredded doc-
uments and demonstrating the effectiveness of the automatic
algorithms.

Index Terms— document assembly, cross-cut, shreds

1. INTRODUCTION

Documents are shredded for a variety of reasons, but the foun-
dational reason is to destroy the information on the document.
Naturally, this leads one to ask, “How secure is the informa-
tion on a shredded document?”

There are a variety of shredders and shredding meth-
ods. In general, a shredder that produces more (i.e., smaller)
pieces, or shreds, from the page is more secure. For example,
a high level of security is provided by cross-cut shredding
where the resulting shreds are 0.8 mm × 4 mm [1]. Least
secure are strip shredding (cutting the document into strips
that span the length of the document) or hand-shredding into
large pieces. A cross-cut shredder employs two cutter drums
rotating in opposite directions. A document is forced through
the drums to produce the shreds. This paper describes re-
constructing a document by assembling the shreds from a
cross-cut shredder in a semi-automatic fashion where the
human and the computer collaborate.

This work was motivated in part by the DARPA Shred-
der Challenge [2]. In order to evaluate the possibility of re-
constructing shredded documents, a test set of five puzzles of
increasing difficulty was created and posed as a challenge to
the public from October 27 to December 3, 2011. Each puzzle
had one or more associated questions that could be answered
based on information contained in the shredded document(s).
Complete reconstruction of documents was not strictly nec-
essary. A puzzle was considered solved once it was recon-

(a) Puzzle 1

Fig. 1: Puzzle 1 of the DARPA Shredder Challenge.

structed sufficiently to extract the information necessary to
answer the associated questions. Our team (EK555) produced
a semi-automatic solution that allowed us to completely solve
two puzzles, and partially solve another two puzzles, resulting
in 11 points and 17th place out of over 9000 registered teams,
while only 13 teams produced more points.

2. RELATED WORK

In the general sense, document de-shredding is a type of puz-
zle. The computational assembly of puzzles has been ex-
plored in the literature, beginning with Freeman et al. [3].
Some success has recently been shown for assembling square-
piece jigsaw puzzles arranged on a grid [4, 5]. These methods
assume that the pieces are perfect squares, and that the assem-
bled puzzle forms a grid-graph of pieces. However, neither
assumption is true for shredded documents, and the results
do not necessarily translate to the problem of assembling the
shreds of a document.

The automatic assembly of shredded documents is a par-
ticularly difficult puzzle for a number of reasons. First, the
number of pieces (shreds) can be large (thousands of pieces
per page), and the complexity of assembly is exponential in
the number of pieces. A few authors specifically address
the challenges of shredded document recovery. In [6, 7], re-
assembly of hand-torn images is proposed based on shape and
color. The number of pieces is relatively low (30 pieces in
the largest example), and the piece shapes are relatively dis-
tinct. In [8, 9], simulated strip-shredded documents (in strip-
shredded documents, the strip runs the length of the docu-

Semi-automatic assembly of real
cross-cut shredded documents

Aaron Deever and Andrew Gallagher
Eastman Kodak, 2012

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

Orient

Classify pixels

Compare
offsets

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

ment) are reconstructed using color cues.
Our work has the following contributions: First, we pro-

pose a semi-automatic interface for reconstructing real (in-
stead of simulated) cross-cut shredded documents with hun-
dreds of pieces. Second, we propose shred orientation fea-
tures. Third, we propose a fast-matching procedure for deter-
mining potential matches for a given shred. Finally, we pro-
pose a set of quantitative measures of document reassembly
performance.

3. APPROACH

Our system was developed to solve the DARPA Shredder
Challenge puzzles. Each puzzle contained images of one or
more pages of shreds that had been manually placed face-up
on a pink background and scanned at 400 dpi. Several differ-
ent shredders were used to produce the Challenge materials.
Fig. 1 shows the image from Puzzle 1. Subsequent puzzles
all have more than one page of scanned shreds, up to a total
of 20 pages for Puzzle 5.

Our system first performs preprocessing steps to extract
and orient each of the puzzle pieces from the scanned shred
image. Next, we perform feature extraction and matching to
characterize the appearance of each shred and to determine
likely matches for each shred. These initial two stages are
automatic. Finally, the human user enters the loop through
semi-automatic assembly. In the following subsections, we
will describe each of these stages in more detail.

3.1. Preprocessing: Parsing the Shreds

We use pixel color to segment the shreds of the document.
Pink pixels are considered background, and the remaining
pixels are considered foreground (shred) pixels. A connected
components algorithm is used to extract connected groups of
shred pixels. Each connected group is considered a shred
piece, and each has a corresponding mask. Example shreds
from Puzzle 1 are shown in Fig. 2.

Following segmentation, each shred is oriented with the
following two-stage process. First, Principle Component
Analysis determines the dominant axis of the shred, and a
rotation is applied to vertically align this axis. Next, the
up-down orientation of a shred is determined based on the
observation that shreds contain two distinctly different pro-
files at each end: one an arrow, and the other a tail. The
shreds from a cross-cut shredder typically all have the same
orientation; either the arrow or the tail is consistently towards
the top of the document. To distinguish the arrow from the
tail, features are computed from the shred mask, considering
the top and bottom N (we use N = 20) rows of the shred, and
a linear classifier is applied. The features are the following:

notch: a notched row is a row of the mask that contains
one or more background pixels between the left and right

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Using color, the pixels from a shred in (a) and mask in (b) are clas-
sified as writing, ruled lines, or background, and the result is shown in (c)
(color-coded). The left and right edges of the classification result are sam-
pled (d). Then, matching is performed to find the most compatible matches
(on the right side, in this case). The top three matches are shown in (e)-(g).
Note that the offsets are automatically found. In this case, the top match (e)
is correct.

mask border of the shred on the nth row. The notch feature
is the total number of background pixels for each of N rows.
This is typically high for the tail, and low (or zero) for the
arrow.
slope: the number of consecutive (non-notched) rows that
have more foreground pixels than the row before. Usually,
the arrow end of the shred has a larger value than the tail end.
point: the distance from the vertical axis of the shred to the
centroid of shred pixels in the first row. Usually, the arrow
end has a smaller value because the point is near the vertical
axis of the shred.

The classifier output is used to orient the shreds so that the
arrow is down (as shown, for example, for the Fig. 2 shreds).
We have found the auto-orientation performs reliably. For
Puzzle 1, 111 of 119 (93%) of the important shreds (contain-
ing handwriting) were correctly oriented with the classifier.
Errors were generally the result of paper tearing inside of the
shredder, instead of being cleanly cut. For Puzzle 2, 91%
of the important shreds (275 of 304) were oriented correctly.
Even when the classifier is incorrect, it is not catastrophic.
During, or even before, the human-computer assembly stage,
the human has the opportunity to correct any errors.

3.2. Feature Extraction and Matching

For each shred, features are extracted from the left and the
right edges of the piece. (For the present time, we neglect
characterizing the image content at the narrow top or bottom
edges of the shred.) In the DARPA challenge, a handwritten
message is written on either lined (i.e., ruled) or unlined pa-
per. In several puzzles, multiple colors of ink are used for
writing. Our goal is to exploit all available information for
computationally suggesting matches. For example, we know
true matches will have ruled lines that extend across the bor-
der. Further, we expect that handwriting near the edge of
one shred will often extend across the boundary and into the
neighboring shred. For this reason, a valuable clue is the iden-
tity of the pen that made a particular marking.

5.2 Image Analysis

In matching two pieces together, there are several pieces of infor-
mation which are available in order to find the optimum matches be-
tween them. The first has already been discussed as a tool for finding
the correct orientations, viz. the shape of the vertical edges. This in-
formation is encoded as the vertical edge time series and used further
below. The second piece of information is the content of the shreds
themselves. This information is encoded in the Luma (a measure of
brightness) time series:

Definition 2. A Luma Time Series is a time series L(y) indexed by
row and gives the value of the Luma of the left-most or right-most
pixel of that row. For each shred there exists a Luma time series for
the left and for the right-hand sides (Ll(y) and Lr(y) respectively).

Although the datasets we use here contain full color information
(and thus three channels of data, one for each primary color), we
have found that using Luma [12], defined as L = .3R+ .59G+ .11B
was sufficient.

While both Luma and edge shape information exist for the top and
bottom edges, it is important to note that our algorithm focuses on
primarily the left and right edges. This is because the cross cut shred-
ding action creates large numbers of deformities on the cross-cuts
and often mangle the top and bottom edges. Furthermore, because
the top and bottom edges are much smaller, there is less information
to match on and consequentially much harder to match effectively.

Each of the two encoded data sources pose different advantages
and disadvantages. The vertical edge time series, while extremely
useful for jigsaw style pieces that had exaggerated features in the
edges, did not by itself provide enough information to identify good
matches. It resulted in false negatives when pieces were mangled
on one side of a cut but not on the other, or when both pieces were
mangled in different ways. Furthermore, false positives were created
as a result of cuts being too straight and thus matching every other
straight cut. The Luma time series, on the other hand, provides a
better source of data, but brought its own problems. The Luma chan-
nel allows for matching content but is susceptible to false positives
such as regularly spaced features e.g., the background lines on ruled
paper, as can be seen in Figure 6. Furthermore, the data provided by
the Luma channel is mostly discontinuous, as the features contained
in the shredded documents tend to be sharp and distinct. This means
that, in comparing two time series, near misses will generate as much
error as complete misses.

Figure 8: A sample Luma time series for the left- and right-hand
sides of the example shred.

5.3 Color Targeting

While by default the Deshredder feature matching algorithm ob-
serves the luminosity of the shreds for points of interest to match
with, Deshredder also allows the user to filter out a specific color to
match pieces against. For instance, in Figure 9a the user desires to
begin to match by the colored ruling on the page. The user then uses
an eye-dropper tool to select that color from an example piece and

(a) (b)

Figure 9: Deshredder allows a user to guide the matching algorithm
to focus on a particular color in comparing shreds.

can use a threshold slider to set the variability of colors to consider.
Deshredder responds by highlighting the colors of interest and then
rerunning the matching algorithm in the background focusing on the
specific colors chosen. In Figure 9b, conversely, the user wishes to
match against the black pen color; in response Deshredder highlights
the black pen strokes and focuses on matching the pen strokes as it
reruns the matching algorithm.

5.4 Matching Shreds

Figure 10: The process for converting an edge, first to a Luma time
series, then finding the edges, and finally creating a Chamfer distance
distribution. The red lines denote the locations of the features.

While being able to compare shreds based on their content and
their shape is useful it is still not sufficient to make good matches. In
order to make the best use of the information in the Luma channel,
we developed a nearest neighbor matching algorithm based upon the
notion of Chamfer similarity, described next.

For each side of each image we build a Luma time series, and from
this time series we use a simple one dimensional convolution kernel
with weights [−1,0,1] to find the edges along the Luma time series.
Next, we filter the Luma time series and note the largest peaks in the
graph. to find the largest such edges in the image and mark these as
our features. Finally, we build a Chamfer distance distribution which
denotes the distance of a pixel to the nearest feature. Figure 10 shows
each step of the process of building the Chamfer distance distribu-
tion [5]. After building a Chamfer distance distribution for each ver-
tical edge of the shred, we can then use these distributions to find the
most suitable match between two edges. Suitable matches are found
using the Chamfer similarity of two Chamfer distance distributions
c1 and c2 defined as:

ChamferSim(c1,c2) =
c1 · c2

max(c1 · c1,c2 · c2)
Here, c1 and c2 are distributions defined over the common bound-

ary of the shreds. The entries of these distributions denote distances
from the nearest feature in the corresponding shred. c1 · c2 denotes
the scalar (dot) product of the vectors.

We compute the Chamfer similarity four times for every pair of
shreds, once for every possible orientation (see Fig. 3). These sim-

Table 2: Comparative analysis of capabilities of various deshredding
algorithms

Criteria D
es

h
re

d
d

er

U
n

sh
re

d
d

er

‘A
ll

Y
o
u
r

S
h
re

d
s

A
re

B
el

o
n

g
T

o
U

.S
.’

‘w
as

ab
i’

‘m
m

b
d

’

‘U
C

S
D

’

Cross-Cut
Shreds

Yes No Yes Yes Yes Yes

User Collabo-
ration

Yes Yes No N/A N/A Yes

Algorithmic
Support for
matching

Yes Yes Yes Yes Yes No

Visual Analyt-
ics

Yes No No No No No

Applicable to
Sensitive Data

Yes Yes Yes Yes Yes No

and hence we focus on capturing them in a suitable time series repre-
sentation. There have been several preliminary attempts at academic
solutions to document reconstruction, however they either deal with
large pieces [9, 25, 29], non-cross cut shreds [19], or they do not pro-
vide user guided iterative machine learning techniques [23]. Some
other approaches can be found in [15, 22, 26, 28, 30]
Motif Mining and Time Series Modeling: Concurrent to advance-
ments in image processing tools, there have been extensive research
in representing images through 1-dimensional time series and mining
motifs from these time series in order to match image objects [4, 11].
These methods work with image boundaries in general and hence do
not require overlapping regions to compare two images. Keogh et
al [16] in 2006 detailed the process of converting a 2-D shape into
a time series and matching two shapes based on the motifs discov-
ered in these time series, allowing for rotations. Yankow et al [36]
and Xi et al. [34] extend this framework further to more complex
scenarios of matching and similarity search. In 2007, Yankow et
al. [37] presented a uniform scaling approach to match differently
scaled shapes. Rakthanmanon et al. [24] matched near duplicate fig-
ures found in historical documents using a time series approach. Our
work is motivated by the above techniques but, as we will show, we
require significantly specialized pipelines to accommodate shredded
documents.
Similarity matrix interaction and visualization: Similarity matri-
ces are the underlying basis for many data mining and visual analytic
algorithms, e.g., clustering [13]. There is significant work on matrix
visualization and interaction, in general (e.g., [27]) and similarity
matrix visualization, in particular (e.g., [31]). Much of these works
are focused around problems like social network analysis, bioinfor-
matics, and network traffic. Here, we demonstrate the use of sim-
ilarity matrix visualization and interaction as a primary mechanism
for users to understand the landscape of possible shred matches and
how they can systematically prune this space to identify key shreds
that can (or cannot) form important segments in the reconstructed
image.

4 OVERVIEW

We introduce Deshredder by identifying three of its salient themes.

4.1 Representing Shapes as Time Series

The first step in Deshredder is to process the individual shreds and
extract two time series from each of these shreds. Although it might
appear unconventional to represent fragments as time series, as in-
troduced in the related work section there is precedence for such a
representation and it provides significant benefits in matching as we
shall see. The two extracted time series correspond to the left and

right side of the shreds, respectively, and closely follows the relevant
contours of the raw shreds as shown in Figure 2. Using a perfectly
vertical line as reference, the time series captures the distance of the
shred boundary from the vertical line. Subsequently, the time se-
ries are used to compute different similarity metrics between shreds
which in turn form the basis of the assembly process.

Figure 2: Extraction of left and right time series from a shred.

4.2 Visualizing and Interacting with Similarity Matrices

One of the basic interfaces available in Deshredder is the similarity
matrix interaction capability (e.g., see Fig. 4 (A)), which provides a
high level overview of the best matches between all pairs of shreds
(assuming all possible orientations). It enables the user to spot pat-
terns that occur over large sets. One such useful pattern occurs with
blank or nearly blank pieces, which are composed of primarily the
background color and therefore yield relatively good matches with
most other shreds. This can be seen by prominent rows and columns
of blue pixels in Figure 4 . The user can use this view to choose
a threshold (‘Threshold’ slider) of what equates to a good match,
and then automatically discount any pieces that have too many good
matches (‘Max Positives’ slider).

Figure 3: Four possible orientations between two shredded pieces.

4.3 Constraint Propagation via User Interaction

Constraint propagation is an important tool for reducing the number
of possible matches to the user. During the process of reconstructing
documents in the physical world humans employ constraint propaga-
tion in order to reduce the number of choices remaining. Deshredder
automatically employs several forms of constraint propagation. The
first is enabled when a user matches all possible spaces along a single

Puzzle 5
Q: What are the three translated
message fragments?
A: gned”b (8 points)
A: yproh (8 points)
A: ias”si (8 points)

 One Morse code message
fragment appears on each page as
dits and dahs

Hints: second page shredded
opposite direction of the other two

3 - 8 1/8 x 10 1/4” lined paper
shredded into more than 6,000
chads

1

1

Puzzle 2

Q: What is the deciphered message?

A: JGOMEZ (4 points)

 A series of numbers appears

throughout the document in the

following order (10, 23, 8, 24, 18, 21)

 The stream cipher decryption

method with an indication of the first

three letters of the answer

Hints: underlined numbers; notes in

the margin; nonsensical context;

coffee stain for fun

8 x 10 1/2” ruled paper shredded into
approximately 373 chads

1

2

1

2

Puzzle 3

Q: What is the indicated location?

A: Cienfuegos (6 points)

A: Cuba (2 points)

 Coordinates for Havana, Cuba

with range/bearing to answer

 Coordinates for Nassau,

Bahamas with range/bearing to

answer

 Outline of Cuba

 Sketch of park

located in the town

Hints: multiple ways to solve/confirm

6 x 8 1/2” quad-ruled paper shredded

into approximately 1,115 chads

1

2

1
2

3

4
3

4

Puzzle 4
Q: What are the names and/or
initials of the collaborators?
A: Duck, Bob C, George, DAVE, PK
(1, 3, 5, 8 or 12 points awarded
based on number of answers given)

 Five names and/or initials
written next to edits throughout the
document

Hints: different color ink,
handwriting, and orientation from
rest of document

8 x 10 1/4” unlined paper shredded
into approximately 2,340 chads

1

1

DARPA Challenge 2011
Puzzle 1

Q: What is the appropriate title
being referenced?
A: Tovarich (2 points)

 Litvak directed two films in 1937:
“Tovarich” and “The Woman I Love”
 “Tovarich” means “Comrade” in
Russian

5 x 7 1/8” notepad shredded into
approximately 224 chads

1

2

1

2

Real world chance in hell?

500 particles per page
trash can ≈ 100k particles

biggest solved jigsaw 10k
pieces, 24 hour compute
n2 scaling (distance matrix)

Use your priors

This is not an image.
This is a document.

Typeface

Lines

Language

10 pt Times New Roman
5k chars/pg
10 chars/shred

double sided!

Keming Labs

Kevin Lynagh

March 2013
SpeakerConf@lynaghk

