
Keming Labs
Kevin Lynagh August 2013

Hacker School

Building things
you can take

apart

Modularity

Systems
resources

machines

languages / runtimes

programs
namespaces / classes

methods / functions

Humans

HTML CSS
JavaScript
Slim SASS

ClojureScript
↳iOS

build tool
Sounds like you need a...

What’s a
build tool?

in the right order

only when necessary

A build tool:
Runs commands...

Make
Lets talk about

Buildin’ stuff since 1977

Rake
Lets talk about

Buildin’ stuff since 2003

Ant
Lets talk about

Buildin’ stuff since 2000

Maven
Lets talk about

Downloading the Internet
and building stuff since 2004

Make’s
interface

Make’s interface

$ vi Make!le
$ make

Write a Make!le
A Make!le is a list of targets
 - what they depend on
 - system commands that build them

all: hello

hello: main.o factorial.o hello.o
! g++ main.o factorial.o hello.o -o hello

main.o: main.cpp
! g++ -c main.cpp

factorial.o: factorial.cpp
! g++ -c factorial.cpp

hello.o: hello.cpp
! g++ -c hello.cpp

clean:
! rm -rf *o hello

Run make

$ make

Modularity

Make’s interface

$ vi Make!le
$ make

Make’s assumptions
All dependencies can be
known in advance

Everything can be done
from the shell

All you want to do is make

All dependencies can be known in advance

$ make

$./con!gure
$ make

All dependencies can be known in advance

All dependencies can be known in advance

$ autoconf
$./con!gure
$ make

Aside

$ wc -l con!gure
 22760 con!gure

Everything can be done from the shell

Everything can be done from the shell

$ time bundle exec ruby -e '1+1'

real 0m1.375s
user 0m1.250s
sys 0m0.084s

Everything can be done from the shell

$ time java -cp clojure-1.5.1.jar \
 clojure.main -e "(+ 1 1)"

real 0m1.352s
user 0m2.028s
sys 0m0.080s

Aside

We have 218 moar
transistors since make

was !rst released

All you want to do is make

All you want to do is make

What’s the dependency graph?
What depends on X?
What’s queued to build?
What are you building now?

Make’s assumptions
All dependencies can be
known in advance

Everything can be done
from the shell

All you want to do is make

Revise assumptions
Dependencies cannot all be
known in advance

Not everything can be done
from the shell

Do more than just make

Modularity

Making
make

more modular

Dependencies cannot all be
known in advance.

They must be discovered.
(by a program)

all: hello

hello: main.o factorial.o hello.o
! g++ main.o factorial.o hello.o -o hello

main.o: main.cpp
! g++ -c main.cpp

factorial.o: factorial.cpp
! g++ -c factorial.cpp

hello.o: hello.cpp
! g++ -c hello.cpp

clean:
! rm -rf *o hello

[{"target": "all", "deps": ["hello"]},

 {"target": "hello",
 "deps": ["main.o","factorial.o","hello.o"],
 "cmd": "g++ main.o factorial.o hello.o -o hello"},

 {"target": "main.o",
 "deps": ["main.cpp"],
 "cmd": "g++ -c main.cpp"},

 {"target": "factorial.o",
 "deps": ["factorial.cpp"],
 "cmd": "g++ -c factorial.cpp"},

 {"target": "hello.o",
 "deps": ["hello.cpp"],
 "cmd": "g++ -c hello.cpp"},

 {"target": "clean",
 "deps": [],
 "cmd": "rm -rf *o hello"}]

<?xml version="1.0" encoding="UTF-8"?>
<targets>
 <target>
 <deps>
 <target>hello</target>
 </deps>
 <name>all</name>
 </target>
 <target>
 <cmd>g++ main.o factorial.o hello.o -o hello</cmd>
 <deps>
 <target>main.o</target>
 <target>factorial.o</target>
 <target>hello.o</target>
 </deps>
 <name>hello</name>
 </target>
 <target>
 <cmd>g++ -c main.cpp</cmd>
 <deps>
 <target>main.cpp</target>
 </deps>
 <name>main.o</name>
 </target>
 <target>
 <cmd>g++ -c factorial.cpp</cmd>
 <deps>
 <target>factorial.cpp</target>
 </deps>
 <name>factorial.o</name>
 </target>
 <target>
 <cmd>g++ -c hello.cpp</cmd>
 <deps>
 <target>hello.cpp</target>
 </deps>
 <name>hello.o</name>
 </target>
 <target>
 <cmd>rm -rf *o hello</cmd>
 <deps />
 <name>clean</name>
 </target>
</targets>

Your programs
should interface

with programs, not
people.

(You can write a second program to
interface with people)

Aside

SQL

Do we even need

Make!les

Do we even need

Rake!les

Do we even need

build.xml

Do we even need

pom.xml

‽

No Make!le?

How you know targets?

How you know their
dependencies?

redo
https://github.com/apenwarr/redo

(based on design by DJB)

https://github.com/apenwarr/redo
https://github.com/apenwarr/redo

Targets by convention

public/thingy/style.css.do
public/thingy/default.css.do
public/default.css.do
default.css.do

$ redo public/thingy/style.css

Runs script at:

Scripts register dependencies

public/thingy/default.css.do

#!/usr/bin/env ruby
require 'rubygems'; require 'sass'

src = "src/sass/" + ARGV[1] + ".sass"
engine = Sass::Engine.for_file(src)
$stdout.puts engine.render
`redo-ifchange #{src}`

Scripts register dependencies

src/sass/style.sass

@import "colors"

body
 margin: 0
 color: $body_color

$body_color: darkGray

src/sass/_colors.sass

style.css: style.sass _colors.sass
! sass style.sass > style.css

Make!le

Scripts register dependencies

public/thingy/default.css.do

#!/usr/bin/env ruby
require 'rubygems'; require 'sass'

src = "src/sass/" + ARGV[1] + ".sass"
engine = Sass::Engine.for_file(src)
$stdout.puts engine.render
deps = engine.dependencies
 .map{|x| x.options[:filename]}
`redo-ifchange #{src} #{deps.join(' ')}`

Less is more.

If you think you need to invent a new
syntax...maybe you don’t.

Not everything can be done
from the shell

Hipster language virtual
machine startup time

Distributed builds

Not everything can be done
from the shell

Guard LeiningenGrunt

Not everything can be done
from the shell

Ruby ClojureJavaScript

Not everything can be done
from the shell

language of the month’s VM

your program

a single computer

their program

Not everything can be done
from the shell

HTTP

Not everything can be done
from the shell

don’t care

your program

don’t care

don’t care

their program

don’t care

Not everything can be done
from the shell

don’t care

your program

don’t care

Think queues.

Think data.

Do more than just make

What’s the dependency graph?
What depends on X?
What’s queued to build?
What are you building now?

Your programs should interface with
programs, not people.

Do more than just make

Think queues/data

Do more than just make

What’s the dependency graph?
What depends on X?

$ curl http://build-server/graph(request socket :graph)

↳ JSON↳ XML

http://build-server/graph
http://build-server/graph

Modularity

Systems
resources

machines

languages / runtimes

programs
namespaces / classes

methods / functions

Humans

Systems
resources

machines

languages / runtimes

programs
namespaces / classes

methods / functions

Humans

Your programs
should interface

with programs, not
people.

Less is more.

Think queues.

Think data.

Keming Labs
Kevin Lynagh August 2013

Hacker School

Building things
you can take

apart

