
A grammar of graphics  November 

Kevin J. Lynagh Keming Labs

�is handout accompanies

Building a grammar of graphics
with Clojure, a talk at Oredev

 in Malmö, Sweden.

Slides: keminglabs.com/talks/
Email: kevin@keminglabs.com

Twitter: @lynaghk
Office: +   

Data visualization is the mapping of quantitative values—sales by re-

gion, hits per second,  utilization—to visual aesthetics such as position,

shape, size, and color. To effectively communicate data visually, you must

understand basic rules about the human perceptual system. In particular,

that we are better at “seeing” quantitative values encoded in certain aesthet-

ics versus others. For instance, we can readily estimate how much longer

one object is than another, whereas it is much more difficult to estimate rel-

ative areas. Some aesthetics do not even have a natural quantitative value

(e.g., which is greater: or ?).

To make a good visualization, you must first decide what you want

to communicate and then how to best show that data visually. �e tables

below show the most commonly used visual aesthetics. Position and length

are two of the most effective visual aesthetics, so it’s difficult to beat a simple

bar chart, scatter plot, or line graph. Aesthetics can be combined to show

multiple data dimensions at once, but techniques like small multiples tend

to be more effective.

Attribute Quantitative?

Form
Length Yes

Width Limited

Orientation No

Size Limited

Shape No

Enclosure No

Color
Hue No

Intensity Limited

Position
-D position Yes

Table and figures adapted from

Stephen Few’s Show Me the Num-
bers. Few’s book is an excellent in-

troduction for practitioners. For

a more in-depth review of human

perceptual research, see Information
Visualization: Perception for Design,

by Colin Ware.

Length Width Orientation Intensity

Size Shape Enclosure -D position

Balancing expressiveness with ease of use and simplicity is a central ten-

sion of programming. �is tension informs the design of statistical graphics

libraries, which can be arranged on a continuum:

General Specific

JavaD

<canvas>

<svg>

D.js

Grammars

of graphics

JFreeChart, Excel

HighCharts

At one extreme you draw directly on the underlying canvas or scenegraph

via low-level calls to, e.g, JavaD’s or ’s drawRect() and drawLine()
methods. �is gives the most flexibility, at the great cost of doing all of the

hard work yourself to iterate over data, choose tick marks, build legends,

and so on. At the other extreme, your library provides “canned” graphics.

�is is very easy, as long as the library provides a visualization for your exact

needs—just call the barChart() function and you’re done. However, if

you want to customize something; draw a bar graph with error bars, draw a

best-fit curve through a scatter plot, or highlight a single datum red to call

it out, and the library does not allow you to do it, you are out of luck.

http://keminglabs.com/talks/
mailto:kevin@keminglabs.com


�e Grammar of Graphics was

originally a book by Leland

Wilkinson. Wilkinson’s ideas

became popular largely through

Hadley Wickham’s ggplot2
library for the R statistical pro-

gramming language, which

implements a simplified “lay-

ered grammar”. �is talk out-

lines C2PO, a variation on the

layered grammar. (�e name

is tentative—Hadley insisted

on a Star Wars-themed name

to match his current R2D3
project =P)

A grammar of graphics explores the middle ground: it can never be as

expressive as directly manipulating the low-level scenegraph, but aims to

be more flexible than a fixed-menu of chart types. �e grammar splits a

graphic apart into orthogonal pieces:

• Data: typically rectangular (an array of maps or a  table).

• Geometry: the visual representation onto which the data will be

mapped: points, lines, polygons, &c. Each “geom” has its own set

of aesthetics: points have -D position, bars have length, and so on.

• Grouper: (optionally) subset the data into different groups.

• Statistic: (optionally) transform or summarize the grouped data.

• Mapping: maps the data dimensions (or the computed values of the

statistic) onto the geom’s aesthetics.

We can concisely describe a scatter plot using the grammar:

0 20 40 60 80
0

10
20
30
40
50

�at

�
i
s

{:data [{:this 15 :that 1}, ...]
:geom #point {:fill "black"}
:mapping {:y :this :x :that}}

Now consider a histogram: a set of bars showing the number of data

that occur in a certain range along the abscissa (x-axis). Rather than use

some special histogram function, we describe what we want using the

grammar:

0–30 30–60 60–90
0

1

2

3

4

5

�at

C
o
u

n
t

{:data [{:this 15 :that 1}, ...]
:mapping {:y :this :x :that}
:geom #bar {:fill "gray"}
:stat :sum
:group #bin {:num-bins 3}}

Of course, the real power of a

grammar of graphics is not to

create graphics that we already

have names for. Rather, it is

to provide a framework with

which we can create effective

graphics tailored to our specific

data sets. Breaking apart the

concerns of visual geometry, data

grouping, and statistics allows

us to reconfigure the pieces in

powerful, novel combinations.

�is handout is a very brief and necessarily incomplete introduction to

data visualization. I hope that it serves as a humble starting point for you

to explore what I find to be very exciting topics. Good luck!

D: JavaScript library for bespoke data graphics http://d3js.org
C: Clojure(Script) port of D https://github.com/lynaghk/c2
ggplot2: R grammar of graphics http://ggplot2.org
c2po: Grammar of graphics on the  http://keminglabs.com/c2po/
Mark Volkmann’s Clojure intro: http://java.ociweb.com/mark/clojure/article.html
Himera: try ClojureScript directly in your browser: http://himera.herokuapp.com/index.html
�e Joy of Clojure, by Houser and Fogus http://joyofclojure.com/
Clojure/core’s TV channel http://blip.tv/clojure

http://d3js.org
https://github.com/lynaghk/c2
http://ggplot2.org
http://keminglabs.com/c2po/
http://java.ociweb.com/mark/clojure/article.html
http://himera.herokuapp.com/index.html
http://joyofclojure.com/
http://blip.tv/clojure

